Ultra-M UCS 240M4单硬盘故障 — 热插拔程序 — CPS

目录

<u>简介</u> <u>背景信息</u> <u>缩写</u> <u>MoP的工作流</u> <u>单硬盘故障</u> <u>计算服务器上的单硬盘故障</u> <u>控制器服务器上的单硬盘故障</u> <u>OSD-Compute服务器上的单硬盘故障</u> OSPD服务器上的单硬盘故障

简介

本文档介绍在托管思科策略套件(CPS)虚拟网络功能(VNF)的Ultra-M设置中更换服务器中故障硬盘 所需的步骤。

背景信息

Ultra-M是预打包和验证的虚拟化移动数据包核心解决方案,旨在简化VNF的部署。OpenStack是 Ultra-M的虚拟化基础设施管理器(VIM),由以下节点类型组成:

- 计算
- •对象存储磁盘——计算(OSD—计算)
- 控制器
- OpenStack平台 导向器(OSPD)

Ultra-M的高级体系结构和涉及的组件如下图所示:

UltraM架构

注意:考虑Ultra M 5.1.x版本以定义本文档中的步骤。本文档面向熟悉Cisco Ultra-M平台的思 科人员,并详细介绍在更换OSPD服务器时在OpenStack级别执行所需的步骤。

缩写

VNF	虚拟网络功能
ESC	弹性服务控制器
MOP	程序方法
OSD	对象存储磁盘
硬盘	硬盘驱动器
SSD	固态驱动器
VIM	虚拟基础设施管理器
虚拟机	虚拟机
EM	元素管理器
UAS	超自动化服务
UUID	通用唯一IDentifier

MoP的工作流

单硬盘故障

1.每台裸机服务器将配置两个HDD驱动器,以在Raid 1配置中充当引导磁盘。如果单个HDD发生故 障,由于存在Raid 1级冗余,故障HDD驱动器可以热插拔。

2.请参阅以下步骤以更换UCS C240 M4服务器上的故障组件:更换服务器组件

3.如果单个HDD出现故障,则仅热交换故障HDD,因此更换新磁盘后无需BIOS升级过程。

4.更换磁盘后,请等待磁盘之间的数据同步。可能需要几个小时才能完成。

5.在基于OpenStack(Ultra-M)的解决方案中,UCS 240M4裸机服务器可承担以下角色之一:计算、 OSD — 计算、控制器和OSPD。

6.在这些服务器角色中处理单个HDD故障所需的步骤相同,本节介绍在磁盘热插拔之前要执行的运 行状况检查。

计算服务器上的单硬盘故障

1.如果UCS 240M4(充当计算节点)中发现HDD驱动器故障,请在启动故障磁盘的热插拔过程之前 执行这些运行状况检查。

2.确定此服务器上运行的VM,并验证功能状态是否正常。

确定托管在计算节点中的虚拟机

确定托管在计算服务器上的VM,并验证它们是否处于活动状态并正在运行。

计算服务器包含CPS VM/弹性服务控制器(ESC)虚拟机组合:

[stack@director ~]\$ nova list --field name,host | grep compute-8
507d67c2-1d00-4321-b9d1-da879af524f8	VNF2-DEPLOYM_XXXX_0_c8d98f0f-d874-45d0-af7588a2d6fa82ea	pod1-compute-8.localdomain	ACTIVE
f9c0763a-4a4f-4bbd-af51-bc7545774be2	VNF2-DEPLOYM_c2_0_df4be88d-b4bf-4456-945a3812653ee229	pod1-compute-8.localdomain	ACTIVE
75528898-ef4b-4d68-b05d-882014708694	VNF2-ESC-ESC0	pod1-compute-8.localdomain	ACTIVE

注意:在此处显示的输出中,第一列对应于通用唯一IDentifier(UUID),第二列是VM名称,第 三列是VM所在的主机名。

运行状况检查

1.登录计算节点中托管的ESC并检查状态。

[admin@VNF2-esc-esc-0 esc-cli]\$ escadm status
0 ESC status=0 ESC Master Healthy

2.登录计算节点中托管的UAS并检查状态。

ubuntu@autovnf2-uas-1:~\$ sudo su root@autovnf2-uas-1:/home/ubuntu# confd_cli -u admin -C Welcome to the ConfD CLI admin connected from 127.0.0.1 using console on autovnf2-uas-1 autovnf2-uas-1#show uas ha uas ha-vip 172.18.181.101 autovnf2-uas-1# autovnf2-uas-1# autovnf2-uas-1#show errors

% No entries found.

3.如果运行状况检查正常,请继续执行故障磁盘热插拔过程,并等待数据同步,因为可能需要几个 小时才能完成。请参阅:<u>更换服务器组件</u>

4.重复这些运行状况检查步骤,以确认托管在计算节点上的虚拟机的运行状况已恢复。

控制器服务器上的单硬盘故障

1.如果UCS 240M4(充当控制器节点)中发现HDD驱动器故障,请在启动故障磁盘的热插拔过程之 前执行这些运行状况检查。

2.检查控制器上的Pace maker状态。

3.登录其中一个活动控制器并检查Pacemaker状态。所有服务必须在可用控制器上运行,并在故障 控制器上停止。

```
[heat-admin@pod1-controller-0 ~]$ sudo pcs status
Cluster name: tripleo_cluster
Stack: corosync
Current DC: podl-controller-0 (version 1.1.15-11.el7_3.4-el74ec8) - partition with quorum
Last updated: Thu Jun 28 07:53:06 2018
                                              Last change: Wed Jan 17 11:38:00 2018 by root
via cibadmin on pod1-controller-0
3 nodes and 22 resources conimaged
Online: [ podl-controller-0 podl-controller-1 podl-controller-2 ]
Full list of resources:
                (ocf::heartbeat:IPaddr2): Started podi-controller-1
Started podi-controller-2
ip-10.2.2.2
                                                Started pod1-controller-0
ip-11.120.0.42 (ocf::heartbeat:IPaddr2):
ip-11.119.0.42 (ocf::heartbeat:IPaddr2):
ip-11.120.0.50 (ocf::heartbeat:IPaddr2):
                                              Started pod1-controller-0
ip-11.118.0.48 (ocf::heartbeat:IPaddr2): Started pod1-controller-1
 ip-192.200.0.102
                       (ocf::heartbeat:IPaddr2):
                                                       Started pod1-controller-2
Clone Set: haproxy-clone [haproxy]
    Started: [ podl-controller-0 podl-controller-1 podl-controller-2 ]
Master/Slave Set: galera-master [galera]
   Masters: [ pod1-controller-0 pod1-controller-1 pod1-controller-2 ]
Clone Set: rabbitmq-clone [rabbitmq]
   Started: [ pod1-controller-0 pod1-controller-1 pod1-controller-2 ]
Master/Slave Set: redis-master [redis]
   Masters: [ pod1-controller-0 ]
    Slaves: [ pod1-controller-1 pod1-controller-2 ]
openstack-cinder-volume
                               (systemd:openstack-cinder-volume): Started podl-controller-
0
my-ipmilan-for-controller-0 (stonith:fence_ipmilan):
                                                                Started pod1-controller-1
my-ipmilan-for-controller-1 (stonith:fence_ipmilan):
                                                                Started pod1-controller-2
```

```
Daemon Status:
corosync: active/enabled
pacemaker: active/enabled
pcsd: active/enabled
4.检查活动控制器中的MariaDB状态。
[stack@director] nova list | grep control
| 4361358a-922f-49b5-89d4-247a50722f6d | pod1-controller-0 | ACTIVE | - | Running |
ctlplane=192.200.0.102
| d0f57f27-93a8-414f-b4d8-957de0d785fc | pod1-controller-1 | ACTIVE | - | Running |
ctlplane=192.200.0.110
[stack@director ~]$ for i in 192.200.0.102 192.200.0.110 ; do echo "*** $i ***" ; ssh heat-
admin@$i "sudo mysql --exec=\"SHOW STATUS LIKE 'wsrep_local_state_comment'\" ; sudo mysql --
exec=\"SHOW STATUS LIKE 'wsrep_cluster_size'\"; done
*** 192.200.0.152 ***
Variable_name
               Value
wsrep_local_state_comment Synced
Variable_name
               Value
                         2
wsrep_cluster_size
*** 192.200.0.154 ***
Variable_name Value
wsrep_local_state_comment Synced
Variable_name
               Value
wsrep_cluster_size
                         2
验证每个活动控制器都存在以下线路:
```

wsrep_local_state_comment: Synced

wsrep_cluster_size: 2

```
5.检查活动控制器中的Rabbitmq状态。
```

6.如果运行状况检查正常,请继续执行故障磁盘热插拔过程,并等待数据同步,因为可能需要几个 小时才能完成。请参阅:<u>更换服务器组件</u>

7.重复这些运行状况检查步骤,以确认控制器上的运行状况已恢复。

OSD-Compute服务器上的单硬盘故障

如果UCS 240M4中发现HDD驱动器故障,它充当OSD计算节点,请在启动故障磁盘的热插拔过程 之前执行这些运行状况检查。

1.计算服务器包含ESC VM。

[stack@director ~]\$ nova list --field name,host | grep osd-compute-1 | 507d67c2-1d00-4321-b9d1-da879af524f8 | VNF2-DEPLOYM_XXXX_0_c8d98f0f-d874-45d0-af75-88a2d6fa82ea | pod1-compute-8.localdomain | ACTIVE | | f9c0763a-4a4f-4bbd-af51-bc7545774be2 | VNF2-DEPLOYM_c1_0_df4be88d-b4bf-4456-945a-3812653ee229 | pod1-compute-8.localdomain | ACTIVE | | 75528898-ef4b-4d68-b05d-882014708694 | VNF2-ESC-ESC-0 | pod1-compute-8.localdomain | ACTIVE | | f5bd7b9c-476a-4679-83e5-303f0aae9309 | VNF2-UAS-uas-0 | pod1-compute-8.localdomain | ACTIVE |

注意:在此处显示的输出中,第一列与(UUID)对应,第二列是VM名称,第三列是VM所在的 主机名。

2. OSD-Compute服务器上的Ceph进程处于活动状态。

[root@pod1-osd-compute-1 ~]# systemctl list-units *ceph*

UNIT	LOAD	ACTIVE	SUB	DESCRIPTION				
var-lib-ceph-osd-ceph\x2d11.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-11				
var-lib-ceph-osd-ceph\x2d2.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-2				
var-lib-ceph-osd-ceph\x2d5.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-5				
var-lib-ceph-osd-ceph\x2d8.mount	loaded	active	mounted	/var/lib/ceph/osd/ceph-8				
ceph-osd@11.service	loaded	active	running	Ceph object storage daemon				
ceph-osd@2.service	loaded	active	running	Ceph object storage daemon				
ceph-osd@5.service	loaded	active	running	Ceph object storage daemon				
ceph-osd@8.service	loaded	active	running	Ceph object storage daemon				
system-ceph\x2ddisk.slice	loaded	active	active	system-ceph\x2ddisk.slice				
system-ceph\x2dosd.slice	loaded	active	active	system-ceph\x2dosd.slice				
ceph-mon.target ceph-mon@.service instances at onc	loaded ce	active	active	ceph target allowing to start/stop all				
ceph-osd.target ceph-osd@.service instances at one	loaded ce	active	active	ceph target allowing to start/stop all				
ceph-radosgw.target ceph-radosgw@.service instances at	loaded once	active	active	ceph target allowing to start/stop all				

ceph.target loaded active active ceph target allowing to start/stop all ceph*@.service instances at once

3.验证OSD(硬盘)到日志(SSD)的映射是否正常。

[heat-admin@pod1-osd-compute-3 ~]\$ sudo ceph-disk list /dev/sda : /dev/sda1 other, iso9660 /dev/sda2 other, xfs, mounted on / /dev/sdb : /dev/sdb1 ceph journal, for /dev/sdc1 /dev/sdb3 ceph journal, for /dev/sdd1 /dev/sdb2 ceph journal, for /dev/sde1 /dev/sdb4 ceph journal, for /dev/sdf1 /dev/sdc : /dev/sdcl ceph data, active, cluster ceph, osd.1, journal /dev/sdbl /dev/sdd : /dev/sdd1 ceph data, active, cluster ceph, osd.7, journal /dev/sdb3 /dev/sde : /dev/sdel ceph data, active, cluster ceph, osd.4, journal /dev/sdb2 /dev/sdf : /dev/sdf1 ceph data, active, cluster ceph, osd.10, journal /dev/sdb4

4.验证Ceph运行状况和OSD树映射是否良好。

[heat-admin@pod1-osd-compute-3 ~]\$ sudo ceph -s cluster eb2bb192-b1c9-11e6-9205-525400330666 health HEALTH_OK 1 mons down, quorum 0,1 pod1-controller-0,pod1-controller-1 monmap el: 3 mons at {pod1-controller-0=11.118.0.10:6789/0,pod1-controller-1=11.118.0.11:6789/0,pod1-controller-2=11.118.0.12:6789/0} election epoch 28, quorum 0,1 pod1-controller-0,pod1-controller-1 osdmap e709: 12 osds: 12 up, 12 in flags sortbitwise,require_jewel_osds pgmap v941813: 704 pgs, 6 pools, 490 GB data, 163 kobjects 1470 GB used, 11922 GB / 13393 GB avail 704 active+clean client io 58580 B/s wr, 0 op/s rd, 7 op/s wr [heat-admin@pod1-osd-compute-3 ~]\$ sudo ceph osd tree ID WEIGHT TYPE NAME UP/DOWN REWEIGHT PRIMARY-AFFINITY -1 13.07996 root default -2 4.35999 host pod1-osd-compute-0 up 1.00000 1.00000 0 1.09000 osd.0 3 1.09000 osd.3 up 1.00000 1.00000 6 1.09000 osd.6 up 1.00000 1.00000 9 1.09000 osd.9 up 1.00000 1.00000 -4 4.35999 host pod1-osd-compute-2 2 1.09000 1.00000 osd.2 up 1.00000 5 1.09000 osd.5 up 1.00000 1.00000 up 1.00000 8 1.09000 osd.8 1.00000 osd.11 up 1.00000 11 1.09000 1.00000 -5 4.35999 host pod1-osd-compute-3 1 1.09000 osd.1 up 1.00000 1.00000 up 1.00000 4 1.09000 1.00000 osd.4 7 1.09000 up 1.00000 osd.7 1.00000 10 1.09000 up 1.00000 osd.10 1.00000

5.如果运行状况检查正常,请继续执行故障磁盘热插拔过程,并等待数据同步,因为可能需要几个 小时才能完成。请参阅更<u>换服务器组件</u>

6.重复这些运行状况检查步骤,以确认托管在OSD-Compute节点上的虚拟机的运行状况已恢复。

OSPD服务器上的单硬盘故障

1.如果UCS 240M4(充当OSPD节点)中观察到HDD驱动器故障,建议在启动故障磁盘的热插拔过 程之前执行这些检查。

2.检查OpenStack堆栈和节点列表的状态。

[stack@director ~]\$ source stackrc [stack@director ~]\$ openstack stack list --nested [stack@director ~]\$ ironic node-list [stack@director ~]\$ nova list 3.检查OSPD节点中是否所有下云服务都处于加载、活动和运行状态。

[stack@director ~]\$ systemctl list-units "openstack*" "neutron*" "openvswitch*"

UNIT	LOAD	ACTIVE	SUB	DESCRIPTION	
neutron-dhcp-agent.service	loaded	active	running	OpenStack	Neutron DHCP Agent
neutron-openvswitch-agent.service	loaded	active	running	OpenStack	Neutron Open vSwitch
Agent					
neutron-ovs-cleanup.service	loaded	active	exited	OpenStack	Neutron Open vSwitch
Cleanup Utility					
neutron-server.service	loaded	active	running	OpenStack	Neutron Server
openstack-aodh-evaluator.service	loaded	active	running	OpenStack	Alarm evaluator
service					
openstack-aodh-listener.service	loaded	active	running	OpenStack	Alarm listener
service					
openstack-aodh-notifier.service	loaded	active	running	OpenStack	Alarm notifier
service					
openstack-ceilometer-central.service	loaded	active	running	OpenStack	ceilometer central
agent					
openstack-ceilometer-collector.service	loaded	active	running	OpenStack	ceilometer collection
service					
openstack-ceilometer-notification.service	loaded	active	running	OpenStack	ceilometer
notification agent					
openstack-glance-api.service	loaded	active	running	OpenStack	Image Service (code-
named Glance) API server					
openstack-glance-registry.service	loaded	active	running	OpenStack	Image Service (code-
named Glance) Registry server					
openstack-heat-api-cfn.service	loaded	active	running	Openstack	Heat CFN-compatible
API Service					
openstack-heat-api.service	loaded	active	running	OpenStack	Heat API Service
openstack-heat-engine.service	loaded	active	running	Openstack	Heat Engine Service
openstack-ironic-api.service	loaded	active	running	OpenStack	Ironic API service
openstack-ironic-conductor.service	loaded	active	running	OpenStack	Ironic Conductor
service					
openstack-ironic-inspector-dnsmasq.service	loaded	active	running	PXE boot d	lnsmasq service for
Ironic Inspector					
openstack-ironic-inspector.service	loaded	active	running	Hardware i	introspection service
for OpenStack Ironic					
openstack-mistral-api.service	loaded	active	running	Mistral AP	PI Server
openstack-mistral-engine.service	loaded	active	running	Mistral Er	ngine Server
openstack-mistral-executor.service	loaded	active	running	Mistral Ex	ecutor Server
openstack-nova-api.service	loaded	active	running	OpenStack	Nova API Server
openstack-nova-cert.service	loaded	active	running	OpenStack	Nova Cert Server
openstack-nova-compute.service	loaded	active	running	OpenStack	Nova Compute Server
openstack-nova-conductor.service	loaded	active	running	OpenStack	Nova Conductor Server
openstack-nova-scheduler.service	loaded	active	running	OpenStack	Nova Scheduler Server
openstack-swift-account-reaper.service	loaded	active	running	OpenStack	Object Storage

(swift) - Account Reaper loaded active running OpenStack Object Storage openstack-swift-account.service (swift) - Account Server openstack-swift-container-updater.service loaded active running OpenStack Object Storage (swift) - Container Updater openstack-swift-container.service loaded active running OpenStack Object Storage (swift) - Container Server openstack-swift-object-updater.service loaded active running OpenStack Object Storage (swift) - Object Updater openstack-swift-object.service loaded active running OpenStack Object Storage (swift) - Object Server openstack-swift-proxy.service loaded active running OpenStack Object Storage (swift) - Proxy Server openstack-zagar.service loaded active running OpenStack Message Queuing Service (code-named Zagar) Server openstack-zaqar@1.service loaded active running OpenStack Message Queuing Service (code-named Zaqar) Server Instance 1 openvswitch.service loaded active exited Open vSwitch

LOAD = Reflects whether the unit definition was properly loaded. ACTIVE = The high-level unit activation state, i.e. generalization of SUB. SUB = The low-level unit activation state, values depend on unit type.

37 loaded units listed. Pass --all to see loaded but inactive units, too. To show all installed unit files use 'systemctl list-unit-files'.

4.如果运行状况检查正常,请继续执行故障磁盘热插拔过程,并等待数据同步,因为可能需要几个 小时才能完成。请参阅更<u>换服务器组件</u>

5.重复这些运行状况检查步骤,以确认OSPD节点的运行状况已恢复。