PGW2200软交换PRI回程解决方法

目录

<u>简介</u> <u>先决条件</u> <u>要求</u> <u>使用的组件</u> <u>规则</u> <u>PRI回传解析说明</u> <u>故障排除</u> <u>步骤 1:检查思科网关AS5xx0配置</u> <u>步骤 2:检查PGW 2200配置</u> <u>步骤 3:检查AS5xx0和PGW 2200之间的RUDPV1和会话管理器链路</u> <u>步骤 4:检查AS5xx0和PABX之间的Q.921状态</u> <u>相关信息</u>

<u>简介</u>

本文档帮助您排除呼叫控制模式下Cisco PGW 2200上PRI回传的信息故障。由于协议族之间的差异 ,回程被分为几类。例如,ISDN for Q信令(QSIG)和数字专用网络信令系统(DPNSS)。

本文档仅介绍Cisco PGW 2200的PRI回传。

<u>先决条件</u>

<u>要求</u>

本文档的读者应掌握以下这些主题的相关知识:

• Cisco Media Gateway Controller Software版本9

使用的组件

本文档中的信息基于Cisco PGW 2200软件版本9.3(2)及更高版本。

本文档中的信息都是基于特定实验室环境中的设备编写的。本文档中使用的所有设备最初均采用原 始(默认)配置。如果您使用的是真实网络,请确保您已经了解所有命令的潜在影响。

<u>规则</u>

有关文档规则的详细信息,请参阅 <u>Cisco 技术提示规则。</u>

PRI回传解析说明

PRI/Q.931信令回传是从PRI中继可靠传输信令(Q.931及以上层)的能力(<u>见图1</u>)。 此PRI中继物理 连接到媒体网关,该媒体网关连接到媒体网关控制器(MGC - Cisco PGW 2200)进行处理。ISDN PRI的信令回传发生在第2层(Q.921)和第3层(Q.931)边界。协议的下层在媒体网关(AS5xx0)上终止 和处理,而上层回传到Cisco PGW 2200。

协议的上层使用IP可靠用户数据报协议(RUDP)进行回传或传输到Cisco PGW 2200。RUDP提供连接和故障会话的自主通知,并在IP网络中按顺序保证信令协议的传输。回程会话管理器是Cisco PGW 2200和媒体网关上用于管理RUDP会话的软件功能。信令回传提供了分布式协议处理的额外优势。这可以实现更大的可扩展性和可扩展性。它还从Cisco PGW 2200卸载较低层协议处理。从层模型中,PRI回传内置到IP/UDP/RUDP/Backhaul-Session-Manager/PRI ISDN第3层。

图 1: PRI回传

图 2: PRI回传 — 呼叫建立顺序

图 3: PRI回传 — 呼叫建立顺序

PGW2200 Call Setup

<u>故障排除</u>

完成以下步骤以排除PRI回传故障。

- <u>步骤 1:检查Cisco网关AS5xx0配置。</u>
- <u>步骤 2:检查Cisco PGW 2200配置。</u>
- <u>步骤 3:检查Cisco AS5xx0和Cisco PGW 2200之间的会话管理器链路。</u>
- <u>步骤 4:检查AS5400和PABX之间的Q.921状态。</u>

步骤 1: 检查思科网关AS5xx0配置

完成以下步骤以检查网关配置。

1. 在全局配置模式下发出以下命令,以设置回程会话管理器,以便在您收到IOS®错误消息% BSM时与Cisco PGW 2200_{IOS5xx016} backhaul-session-manager set set1 group group1 set set1 session group group1 x.x.x.x x.x.x port priority 此命令输出显示了一个示例: backhaul-session-manager set pgw-cag client nft group pgw-cag set pgw-cag session group pgw-cag 213.254.253.140 6000 213.254.252.5 6000 1 session group pgw-cag 213.254.253.141 6000 213.254.252.5 6000 2 session group pgw-cag 213.254.253.156 6000 213.254.252.21 6000 3 session group pgw-cag 213.254.253.157 6000 213.254.252.21 6000 4 **注意:**当您使用回程会话管理器配置将指向不同物理PGW 2200的会话放置到同一组下时 ,Cisco IOS配置不支持。您需要将两个PGW 2200分成两组。有关详细信息,请参<u>阅Cisco</u> Bug ID CSCec24132。

输入pri-group timeslots 1-31 service mgcp命令,以在控制器配置下为PRI回程设置控制器。
 例如:

controller E1 7/5
pri-group timeslots 1-31 service mgcp

注意:此配置示例使用控制器E1 7/5,此控制器稍后会反映Cisco PGW 2200配置。

 在ISDN D信道配置下插入isdn bind-I3 backhaul xxxx命令,将ISDN第2层接口链接到回程会话 管理器。例如:

interface Serial7/5:15

1

no ip address isdn switch-type primary-net5 isdn protocol-emulate network isdn incoming-voice modem isdn bind-13 backhaul pgw-cag isdn PROGRESS-instead-of-ALERTING no isdn outgoing display-ie isdn outgoing ie redirecting-number isdn incoming alerting add-PI no cdp enable

注意:如果添加isdn negotiate-bchan resend-setup原因代码41,则它仅适用于传出呼叫,不适用于路由器接收的呼叫。此CLI发送不带EXCLUSIVE指示符的设置,并允许交换机选择另一个B信道(如果有)。否则,当交换机以原因代码41响应时,路由器会选择另一个B信道并再次发送设置。注意:交换机可能没有与设置消息中的特征相匹配的B信道。在这种情况下,交换机无法分配另一个B信道,而使用另一个首选B信道的设置也会失败。注意:您仍不能同时在控制器上使用MGCP NAS和PRI回传。E1控制器(MGCP NAS需要)上的extsig mgcp命令可防止在控制器pri-group:

```
as5400(config)#contro e1 7/0
as5400(config-controller)#extsig mgcp
as5400(config-controller)#pri-group service mgcp
%Default time-slot= 16 in use
```

4. 发出debug backhaul-session-manager命令以调试回程会话管理器。

步骤 2:检查PGW 2200配置

完成以下步骤以检查PGW 2200配置。

1. 将IPFASPATH添加到Cisco PGW 2200配置。

prov-add:IPFASPATH:NAME="pri2-sig",DESC="Signalling PRI2 withCommunicationNAS02",EXTNODE="NAS02",MDO="ETS_300_102", CUSTGRPID="Cisco1",SIDE="network",ABFLAG="n",CRLEN=2 这可确保MDO变体与IOS网关变体相等。注意:检查此表中包含的ISDN变体。

2. 将DCHAN添加到Cisco PGW 2200配置。

prov-add:DCHAN:NAME="pri2-dch1",DESC="Dchannel PRI2 to
Project Communication",SVC="pri2-sig",PRI=1,SESSIONSET=
"mil1-pri2-ses",SIGSLOT=7,SIGPORT=5

这可确保指定SigSlot/SigPort。它还确保Cisco网关端口/插槽和Cisco PGW 2200端口在 DCHAN上匹配。**注意:**如果在IOS网关上使用E1 7/5控制器(包括**isdn bind-I3 backhaul** IOS命 令),则MML DCHAN命令的**SIGSLOT=7,SIGPORT=5**需要是相同的信息。

3. 在调配交换中继时,请确保不将span参数填充为"0"。 您可以从export_trunk.dat文件中第三列

的内容中看到这一点。交换中继上的跨度值需要为"ffff"。从MML**命令行发出prov**exp:all:dirname="file_name"命令以检出此命令。

mgcusr@pgw2200-1% mml Copyright © 1998-2002, Cisco Systems, Inc. Session 1 is in use, using session 2 pgw2200-1mml> prov-exp:all:dirname="check1" MGC-01 - Media Gateway Controller 2005-08-12 17:39:44.209 MEST M RTRV "ALL" ; pgw2200-1 mml> quit

转到/opt/CiscoMGC/etc/cust_specific/check1目录。在export_trunk.dat文件中,确保第三列包 含"ffff"而不是零(0)。 如果不是,请编辑文件并更改。

 发出prov-add:files:name="BCFile",file="export_trunk.dat",action="Import"命令以启动MML调 配会话,并重新导入中继文件。修改的export_trunk.dat文件应位于

/opt/CiscoMGC/etc/cust_specific/check1目录下。切记为要进**行的新**配置发出一个prov-cpy。 5. 发出MML命令**rtrv-alms**以解释当前遇到的错误类型。

rtrv-dest:all

!--- Shows the MGCP connectivity status of nodes !--- that the PGW 2200 defines. rtrvdchan:all !--- On the active PGW 2200, the status is !--- pri-1:ipfas-1,LID=0:IS. On the standby PGW 2200, !--- the status is pri-1:ipfas-1,LID=0:OOS,STBY.

rtrv-iplnk:all

!--- All of the iplnk are on the standby PGW 2200 in the !--- iplnk-1:OOS,STBY status. They
are actually in !--- the OOS state because no message is handled by them. !--- On the
active PGW 2200, you see the status as iplnk-1:IS. !--- The other statuses are explained in
the !--- MML Command Reference Chapter of the Cisco MGC Software !--- MML Command Reference
Guide. rtrv-tc:all !--- Shows the status of all call channels. rtrv-alms::cont !--- Check
the Alarms status on the Cisco PGW 2200.

您还可以使用perl命令perl -F, -anwe 'print unpack("x4 A15", localtime(\$F[1])),"。\$F[2],从 /opt/CiscoMGC/var/log中检索alm.csv文件的详细信息:**@F[0,3..7]" < meas.csv。注意:**如果 **要转**换为UTC时间戳,**请使**用gmtime而不是localtime。输出格式如下:

```
Aug 10 15:58:53.946: 0 0 1 "Fail to communicate with peer module over link B" "ipAddrPeerB" "ProvObjManagement"
```

```
Aug 10 21:29:30.934: 0 1 1 "Provisioning: Dynamic Reconfiguration"
"POM-01" "ProvObjManagement"
```

```
Aug 10 21:29:48.990: 0 1 2 "Signal Channel Failure" "c7iplnk1-ls-stp1" "IosChanMgr"
Aug 10 21:29:49.620: 0 0 2 "Non-specific Failure" "ls-stp1" "IosChanMgr"
Aug 10 21:29:49.620: 0 0 2 "Signal Channel Failure" "c7iplnk1-ls-stp1" "IosChanMgr"
Aug 10 21:29:49.630: 0 0 2 "SS7 Signaling Service Unavailable" "srv-bru8" "IosChanMgr"
```

- 6. 发出UNIX命**令tail -f platform.log**以检查目录/opt/CiscoMGC/var/log下的platform.log。有关其 他信息,请参阅日志消息。
- 7. 检查ISDN变体。IOS网关上使用isdn switch-type primary-net5命令。在Cisco PGW 2200中 ,它与IPFASPATH中的mdo=ETS_300_102链接。下表显示了Cisco PGW 2200支持的 ISDN变体:此命令输出示例来自IOS网关。

v5350-3(config)#isdn switch-type ?

primary-4ess	Lucent 4ESS switch type for the U.S.
primary-5ess	Lucent 5ESS switch type for the U.S.
primary-dms100	Northern Telecom DMS-100 switch type for U.S.
primary-net5	NET5 switch type for UK, Europe, Asia , Australia
primary-ni	National ISDN Switch type for the U.S.
primary-ntt	NTT switch type for Japan
primary-qsig	QSIG switch type
primary-ts014	TS014 switch type for Australia (obsolete)
v5350-3(config)#	

步骤 3: 检查AS5xx0和PGW 2200之间的RUDPV1和会话管理器链路

完成以下步骤以检查RUDPV1和会话管理器链路。

- 发出以下show和clear命令:show rudpv1 failure 显示检测到的任何rudpv1故障。例如,您 会看到sendWindowFullFailures。这表示IP链路上的发送数据段存在拥塞。show rudpv1 parameters — 显示rudpv1连接参数以及所有当前会话的状态和参数。连接类型为ACTIVE或 PASSIVE。活动表示此对等体是客户端并发起连接。被动表示此对等体是服务器并侦听连接 。show rudpv1 statistics — 显示自上次重新启动或执行clear statistics命令以来所有当前会话 的rudpv1内部统计信息和统计信息以及所有rudp连接的累计统计信息。clear rudpv1 statistics — 清除已收集的所有rudpv1统计信息。在需要当前统计信息且IOS网关已运行较长时间时执行 此命令。
- 2. 发出debug rudpv1命令。

#debug rudpv1 ?

application	Enable application debugging
client	Create client test process
performance	Enable performance debugging
retransmit	Enable retransmit/softreset debugging
segment	Enable segment debugging
server	Create server test process
signal	Show signals sent to applications
state	Show state transitions
timer	Enable timer debugging
transfer	Show transfer state information

在实时系统中,性能、状态、信号和传输的调试最有用。应用、重传和计时器的调试会生成太 多输出,导致链路发生故障,或仅用于内部调试。**注意:**此调试会为发送或接收的每个网段打 印一行。如果有大量流量在运行,这会导致计时延迟,从而导致链路故障。

 发出show backhaul-session-manager和show backhaul set all命令,以查看传输信令的IP管道 是否正常。

```
NAS02#show backhaul-session-manager group status all
Session-Group
Group Name : pgw-cag
Set Name : pgw-cag
Status : Group-Inservice
Status (use) : Group-Active
NAS02#show backhaul set all
Session-Set
```

```
Name : pgw-cag
State : BSM_SET_ACTIVE_IS
Mode : Non-Fault-Tolerant(NFT)
Option : Option-Client
Groups : 1
statistics
Successful switchovers:0
Switchover Failures: 0
Set Down Count 1
Group: pgw-cag
```

show backhaul set all命令的不同状态如下

:BSM_SET_IDLEBSM_SET_OOSBSM_SET_STDBY_ISBSM_SET_ACTIVE_ISBSM_SET_FULL_ISBSM_SET_SWITCH_OVERBSM_SET_UNKNOWN如果一切正常,这还确认Cisco PGW 2200上相应的会话集链路具有服务中状态(mml命令**rtrv-ipInk**)。Cisco PGW 2200和 IOS网关AC5xx0之间的管道现在完全可用。下一步是检查Cisco IOS网关AS5xx0和PABX之间 的边界。

步骤 4: 检查AS5xx0和PABX之间的Q.921状态

完成以下步骤以检查AS5xx0和PABX之间的Q.921状态。

```
1. 发出show isdn status和show isdn service命令。
  NAS02#show isdn status
 Global ISDN Switchtype = primary-net5
  ISDN Serial7/5:15 interface
        ****** Network side configuration ******
        dsl 0, interface ISDN Switchtype = primary-net5
        L2 Protocol = 0.921 L3 Protocol(s) = BACKHAUL
     Layer 1 Status:
        ACTIVE
     Layer 2 Status:
        TEI = 0, Ces = 1, SAPI = 0, State = MULTIPLE_FRAME_ESTABLISHED
     Laver 3 Status:
        0 Active Layer 3 Call(s)
     Active dsl 0 CCBs = 0
     The Free Channel Mask: 0xFFFF7FFF
     Number of L2 Discards = 4, L2 Session ID = 25
     Total Allocated ISDN CCBs = 0
  NAS02#show isdn service
  PRI Channel Statistics:
  ISDN Se7/5:15, Channel [1-31]
   Configured Isdn Interface (dsl) 0
    Channel State (0=Idle 1=Proposed 2=Busy 3=Reserved 4=Restart 5=Maint_Pend)
     Channel : 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     Service State (0=Inservice 1=Maint 2=Outofservice)
     Channel: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     在此,您可以开始看到Q.921未出现的问题,该问题在PGW 2200端与保持"服务外"状态的目
  标和D信道对应。第一种可能是Q.921网络端配置不匹配。很容易看出这不是问题的原因,因
  为从AS5400配置中删除isdn协议模拟网络并未解决问题。
2. 查看Q.921调试,了解Q.921链路未打开的原因。这是调试输出。
  Apr 14 10:57:23.600: ISDN Se7/5:15 Q921: Net TX -> SABMEp sapi=0 tei=0
  Apr 14 10:57:24.600: ISDN Se7/5:15 Q921: Net TX -> SABMEp sapi=0 tei=0
  Apr 14 10:57:25.600: ISDN Se7/5:15 Q921: Net TX -> SABMEp sapi=0 tei=0
  Apr 14 10:57:45.419: ISDN Se7/5:15 Q921: Net RX <- BAD FRAME(0x02017F)
  Apr 14 10:57:46.419: ISDN Se7/5:15 Q921: Net RX <- BAD FRAME(0x02017F)
  AS5400发送Q.921 SABME来初始化链路,并接收无法解释的帧(坏帧)。 可能性包括:此
  AS5400的E1硬件问题。E1在远程端环路。远程端的硬件或配置问题。将配置移至同一
  AS5400上另一个未使用的E1,排除了第一种可能性。问题看起来完全相同。客户还检查E1上
  是否没有环路。此时,检查PABX端。
3. 发出show controller命令以检查可能的第1层错误。
  #show controllers E1
  Framing is CRC4, Line Code is HDB3, Clock Source is Line.
   Data in current interval (480 seconds elapsed):
      107543277 Line Code Violations, 0 Path Code Violations
      120 Slip Secs, 480 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins
      0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 480 Unavail Secs
   Total Data (last 24 hours)
      3630889 Line Code Violations, 4097 Path Code Violations,
      2345 Slip Secs, 86316 Fr Loss Secs, 20980 Line Err Secs, 0 Degraded Mins,
      1 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 86317 Unavail Secs
4. 当您在控制器下发出shutdown命令时,结果是以下调试消息:
  000046: Jun 2 16:19:16.740: %CSM-5-PRI: delete PRI at slot 7, unit 2, channel 0
```

000047: Jun 2 16:19:16.744: %CONTROLLER-5-UPDOWN: Controller E1 7/2, changed sn 000048: Jun 2 16:19:16.744: SESSION: PKT: xmt. (34) bufp: 0x6367F52C, len: 16 在DCM/2200上生出MAM 会合rtr, clmc:

在PGW 2200上发出MML命令rtrv-alms:

mml> rtrv-alms

MGC-02 - Media Gateway Controller 2005-06-02 18:11:29.285 GMT M RTRV

"pri-bucegi: 2005-06-02 17:28:15.301 GMT,ALM=\"FAIL\",SEV=MJ"

当您在控制器下发出**no shutdown**命令时,结果是IOS网关上出现以下调试消息: 000138: Jun 2 17:03:25.350: %CONTROLLER-5-UPDOWN: Controller E1 7/2, changed sp 000139: Jun 2 17:03:25.350: %CSM-5-PRI: add PRI at slot 7, unit 2, channel 15 0 有关其他IOS调试命令,请参阅呼叫代理应用的PRI/Q.931信令回传命令。

相关信息

- Cisco PGW 2200 Softswitch技术说明
- Cisco 信令控制器技术文档
- 语音技术支持
- 语音和 IP 通信产品支持
- Cisco IP 电话故障排除
- <u>技术支持和文档 Cisco Systems</u>