在交换机上配置基于IPv4的访问控制列表(ACL)和 访问控制条目(ACE)

目标

访问控制列表(ACL)是用于提高安全性的网络流量过滤器和相关操作的列表。它阻止或允许用 户访问特定资源。ACL包含允许或拒绝访问网络设备的主机。

基于IPv4的ACL是使用第3层信息允许或拒绝流量访问的源IPv4地址列表。IPv4 ACL根据已配置的IP过滤器限制与IP相关的流量。过滤器包含匹配IP数据包的规则,如果数据包匹配,规则还规定应允许还是拒绝该数据包。

访问控制条目(ACE)包含实际访问规则条件。创建ACE后,将其应用于ACL。

您应该使用访问列表为访问网络提供基本的安全级别。如果不在网络设备上配置访问列表,则 允许通过交换机或路由器的所有数据包进入网络的所有部分。

本文提供有关如何在受管交换机上配置基于IPv4的ACL和ACE的说明。

适用设备

- Sx350 系列
- SG350X 系列
- Sx500系列
- Sx550X 系列

软件版本

- •1.4.5.02 Sx500系列
- •2.2.5.68 Sx350系列、SG350X系列、Sx550X系列

配置基于IPv4的ACL和ACE

配置基于IPv4的ACL

步骤1.登录基于Web的实用程序,然后转到Access Control > IPv4-Based ACL。

步骤2.单击"添**加"**按钮。

IPv4-Based ACL				
IPv4-	Based ACL Table			
	ACL Name			
0 res	ults found.			
A	dd Delete			
IPv	4-Based ACE Table			

步骤3.在ACL Name字段中输入新ACL的名称。

O ACL Name: IPv4 ACL	(8/32 characters used)
Apply Close	

注意:在本例中,使用IPv4 ACL。

步骤4.单击"应用",然后单击"关闭"。

Success. To permanently save the configuration, go to the Copy/Save Configuration page or click the Save icon.				
🌣 ACL Name:	(0/32 characters used)			
Apply Close				

步骤5.(可选)单击"保存"以在启动配置文件中保存设置。

IP 48-Port Gigabit PoE Stackable Manag	ed S	cis Switch
IPv4-Based ACL		
IPv4-Based ACL Table		
ACL Name		
IPv4 ACL		
Add Delete		
IPv4-Based ACE Table		

现在,您应该已在交换机上配置了基于IPv4的ACL。

当端口上收到数据包时,交换机会通过第一个ACL处理该数据包。如果数据包与第一个ACL的 ACE过滤器匹配,则会执行ACE操作。如果数据包与任何ACE过滤器都不匹配,则会处理下 一个ACL。如果在所有相关ACL中找不到与任何ACE匹配的ACE,则默认情况下会丢弃数据包 。

在此场景中,将创建ACE以拒绝从特定用户定义的源IPv4地址发送到任何目标地址的流量。

注意:创建允许所有流量的低优先级ACE可避免此默认操作。

步骤1.在基于Web的实用程序上,转到Access Control > IPv4-Based ACE。

重要信息:要充分利用交换机的可用特性和功能,请从页面右上角的"显示模式"下拉列表中选 择**高级**,以更改为高级模式。

Display Mode:	Advanced v	Logout	About	Help
	Basic			0
	Advanced			

步骤2.从ACL Name下拉列表中选择ACL,然后单击Go。

IPv4	4-Base	d ACE	Ξ					
IPv4	I-Based A	ACE Tab	le					
Filte	r: ACL N	<i>lame</i> equ	als to	4 ACL V	Go			
	Priority	Action	Logg	4 ACL	Source IP A	dress	Destination I	P Address
					IP Address	Wildcard Mask	IP Address	Wildcard Mask
0 re	sults foun	d.						
	Add) 🔤	idit	Delete	;			
Flag S	Set preser	nts the fla	g types in ti	he following	order: Urg, A	ck, Psh, Rst, Syn,	Fin. Set is rep	presented as 1, ur

IPv4-Based ACL Table

注意:表中将显示已为ACL配置的ACE。

步骤3.单击Add按钮将新规则添加到ACL。

注意:ACL Name字段显示ACL的名称。

步骤4.在Priority字段中输入ACE的*优先级*值。优先级值较高的ACE首先处理。值1是最高优先级。范围为1到2147483647。

ACL Name:	IPv4 ACL
Priority:	2 (Range: 1 - 2147483647)
Action:	 Permit Deny Shutdown
Logging:	Enable
Protocol:	Any (IP) Select from list ICMP Protocol ID to match (Range: 0 - 255)

注意:在本例中,使用2。

I.

步骤5.点击与帧满足ACE所需标准时所执行的所需操作对应的单选按钮。

注意:在本例中,选择Permit。

- 允许 交换机转发符合ACE所需标准的数据包。
- 拒绝 交换机丢弃符合ACE所需标准的数据包。
- •关闭 交换机丢弃不符合ACE所需标准的数据包并禁用接收数据包的端口。

注意:禁用的端口可在Port Settings页面上重新激活。

第6步。(可选)选中Enable Logging复选框以启用与ACL规则匹配的ACL流的日志记录。

Logging:	Enable
Time Range:	Enable
Time Range Name:	Time Range
Protocol:	 Any (IP) Select from
	Protocol II

步骤7.(可选)选中**Enable** Time Range复选框,以允许将时间范围配置到ACE。时间范围用 于限制ACE生效的时间量。

	Logging:	1	Enable
	Time Range:	v	Enable
	Time Range Name:	Tim	ne Range 1 🔻 Edit
•	Protocol:		Any (IPv6) Select from list TCP T Protocol ID to match (Range: 0 - 255)

第8步。(可选)从Time Range Name下拉列表中,选择要应用到ACE的时间范围。

	Time Range Name:	Time Range 1 🔻 Edit	
0	Protocol:	Any (IPv6) Select from list TCP *	
		Protocol ID to match	(Range: 0 - 255)

注意:可以单击"编辑"在"时间范围"页上导航并创建时间范围。

<	Time Range Name:	ime Range 1 (12/32 characters used)	
	Absolute Starting Time:) Immediate) Date 2010 v Jan v 01 v Time 00 v 00 v HH:MM	٦
	Absolute Ending Time:	Date 2010 * Jan * 01 * Time 00 * 00 * HH:MM	
	Apply Close)	

步骤9.在Protocol区域中选择协议类型。ACE将根据特定协议或协议ID创建。

Protocol:	Any (IP)	
	 Select from list 	t

۲	Any (IP)			
υ	Select tron	n list ICMP	T	_
\bigcirc	Protocol ID) to match		(Range: 0 - 255)

选项有:

- Any(IP) 此选项将配置ACE以接受所有IP协议。
- •从列表中选择 此选项允许您从下拉列表中选择协议。如果您喜欢此选项,请跳至<u>步骤</u> <u>10</u>。
- •要匹配的协议ID 此选项将允许您输入协议ID。如果您喜欢此选项,请跳至步骤11。

注意:在本例中,选择Any(IP)。

<u>第10步</u>。(可选)如果您在第9步中选择了"从列表中选择",请从下拉列表中选择协议。

选项有:

- ICMP Internet控制消息协议
- IP in IP IP封装中的IP
- TCP 传输控制协议
- EGP 外部网关协议
- IGP 内部网关协议
- UDP 用户数据报协议
- HMP 主机映射协议
- RDP 可靠数据报协议
- IDPR 域间策略路由
- IPV6 通过IPv4隧道的IPv6
- IPV6:ROUT 匹配属于通过网关的IPv6 over IPv4路由的数据包
- IPV6:FRAG 匹配属于IPv6 over IPv4分段报头的数据包
- IDRP IS-IS域间路由协议
- RSVP ReSerVation协议
- AH 身份验证报头
- IPV6:ICMP IPv6的ICMP
- EIGRP 增强型内部网关路由协议
- OSPF 开放最短路径优先
- IPIP IP中的IP
- PIM 协议无关组播
- L2TP 第2层隧道协议

<u>第11步</u>。(可选)如果您在第9步中选择要匹配的协议ID,请在"要匹配的协议ID"字*段中输入* 协议ID。

Any (IP)	
Select from list UCMP *	
Protocol ID to match 1	(Range: 0 - 255)

步骤12.在Source IP Address区域中,点击与ACE的所需条件对应的单选按钮。

Source IP Address:

选项有:

- •任意 所有源IPv4地址均应用于ACE。
- 用户定义 在源IP地址值和源IP通配符掩码字段中输入要应*用于ACE的IP地址和IP通配* 符掩码。通配符掩码用于定义IP地址范围。

注意:在本例中,选择"用户定义"。如果选择Any,请跳至<u>步骤15</u>。

步骤13.在Source IP Address Value字段中输入源IP地址。

Source IP Address:	 Any User Defined 	
O Source IP Address Value:	192.168.1.1	
Source IP Wildcard Mask:		(0s for matching, 1s for no matching)

注意:在本例中,使用192.168.1.1。

步骤14.在Source IP Wildcard Mask字段中输入源通配符掩码。

Source IP Address Value:	192.168.1.1	
Source IP Wildcard Mask:	0.0.0.255	(0s for matching, 1s for no matching)

注意:在本例中,使用0.0.0.255。

步骤15.在Destination IP Address区域中,单击与ACE的所需条件对应的单选按钮。

Source IP Address:	 Any User Defined 			
Source IP Address Value:	192.168.1.1			
Source IP Wildcard Mask:	0.0.0.255	(Os for matching, 1s for no matching)		
Destination IP Address:	 Any User Defined 			
☆ Destination IP Address Value	:			
Destination IP Wildcard Mask	C	(0s for matching, 1s for no matching)		

选项有:

•任意—所有目标IPv4地址均应用于ACE。

• 用户定义 — 在目标IP地址值和目标IP通配符掩码字段中输入要应用于ACE的IP地址和 IP通配符掩码。通配符掩码用于定义IP地址范围。

注意:在本例中,选择Any。选择此选项意味着要创建的ACE将允许从指定IPv4地址到任何目 标的ACE流量。

步骤16.(可选)点击Source Port区域中的单选按钮。默认值为Any。

Source Port:	Any Single from list Echo 🔻		
	Single by number		(Range: 0 - 65535)
0	Range	-	
🜣 Destination Port: 🧕 🧕	Any		
	Single from list Echo 🔻		
	Single by number		(Range: 0 - 65535)
0	Range	-	

- Any 匹配所有源端口。
- 单个从列表 您可以选择与数据包匹配的单个TCP/UDP源端口。仅当在"从列表选择"下 拉菜单中选择800/6-TCP或800/17-UDP时,此字段才处于活动状态。
- 按编号单一(Single by number) 您可以选择与数据包匹配的单个TCP/UDP源端口。仅 当在"从列表选择"下拉菜单中选择800/6-TCP或800/17-UDP时,此字段才处于活动状态。
- 范围 您可以选择数据包匹配的TCP/UDP源端口范围。可以配置八个不同的端口范围 (源端口和目标端口之间共享)。TCP和UDP协议各有八个端口范围。

步骤17.(可选)点击Destination Port区域中的单选按钮。默认值为Any。

- •任意 匹配所有源端口
- 单个从列表 您可以选择与数据包匹配的单个TCP/UDP源端口。仅当在"从列表选择"下 拉菜单中选择800/6-TCP或800/17-UDP时,此字段才处于活动状态。
- 按编号单一(Single by number) 您可以选择与数据包匹配的单个TCP/UDP源端口。仅 当在"从列表选择"下拉菜单中选择800/6-TCP或800/17-UDP时,此字段才处于活动状态。
- 范围 您可以选择数据包匹配的TCP/UDP源端口范围。可以配置八个不同的端口范围 (源端口和目标端口之间共享)。TCP和UDP协议各有八个端口范围。

步骤18.(可选)在TCP Flags区域中,选择一个或多个TCP标志,以便过滤数据包。过滤的数据包会被转发或丢弃。通过TCP标志过滤数据包可增强数据包控制,从而提高网络安全性。

- 设置(Set) 如果设置了标志,则匹配。
- 取消设置 如果未设置标志,则匹配。
- •无所谓 忽略TCP标志。

Urg:	Ack:	Psh:	Rst:	Syn:	Fin:
Set	Set	Set	Set	Set	Set
Unset	O Unset	O Unset	O Unset	O Unset	O Unset
On't care	On't care	On't care	On't care	Don't care	On't car

TCP标志包括:

- Urg 此标志用于将传入数据标识为Urgent。
- •确认 此标志用于确认数据包的成功接收。

- Psh 此标志用于确保数据获得优先级(它应得到的优先级)并在发送或接收端进行处 理。
- Rst 当数据段到达时,不用于当前连接时,使用此标志。
- Syn 此标志用于TCP通信。
- Fin 当通信或数据传输完成时使用此标志。

步骤19.(可选)从Type of Service区域点击IP数据包的服务类型。

Type of Service:	Any DSCP to match (Range: 0 - 63)
	IP Precedence to match (Range: 0 - 7)
O ICMP:	Any Select from list Echo Reply (Range: 0 - 255)
ICMP Code:	Any User Defined (Range: 0 - 255)
♥ IGMP:	Any Select from list DVMRP IGMP Type to match (Range: 0 - 255)
Apply Clo	ose
选项有:	
Type of Service:	 Any DSCP to match IP Precedence to match (Range: 0 - 63)

- Any 它可以是任何类型的流量拥塞服务。
- DSCP to Match DSCP是用于分类和管理网络流量的机制。6位(0-63)用于选择数据包在 每个节点上体验的每跳行为。
- 要匹配的IP优先级 IP优先级是一种服务类型(TOS)模型,网络使用它来帮助提供适当的服务质量(QoS)承诺。此模型使用IP报头中服务类型字节的三个最重要位,如RFC 791和 RFC 1349中所述。具有IP首选项值的关键字如下:
 - 0 例程
 - -1 优先级
 - 2 立即
 - 3 用于闪存
 - 4 用于flash-override
 - -5--关键
 - 6 用于互联网

步骤20.(可选)如果ACL的IP协议是ICMP,请点击用于过滤目的的ICMP消息类型。按名称 选择消息类型或输入消息类型编号:

- •任意 接受所有消息类型。
- •从列表中选择 您可以按名称选择消息类型。
- •要匹配的ICMP类型 用于过滤目的的消息类型的数量。范围为0到255。

步骤21.(可选)ICMP消息可以有一个代码字段,指示如何处理该消息。单击以下选项之一以 配置是否过滤此代码:

- •任意(Any) 接受所有代码。
- •用户定义 您可以输入用于过滤目的的ICMP代码。范围为0到255。

步骤22.(可选)如果ACL基于IGMP,请点击用于过滤目的的IGMP消息类型。按名称选择消 息类型或输入消息类型编号:

- •任意 接受所有消息类型。
- •从列表中选择 您可以从下拉列表中选择任何选项:
- DVMRP 使用反向路径泛洪技术,通过每个接口(数据包到达的接口除外)将收到的数 据包的副本发送出去。
- Host-Query 定期在每个连接的网络上发送常规主机查询消息以获取信息。
- Host-Reply 它对查询作出回复。
- PIM 本地和远程组播路由器之间使用协议独立组播(PIM)将组播流量从组播服务器定向 到多个组播客户端。
- 跟踪 提供有关加入和离开IGMP组播组的信息。
- 要匹配的IGMP类型 用于过滤目的的消息类型的数量。范围为0到255。

步骤23.单击"应用",然后单击"关闭"。ACE已创建并与ACL名称关联。

步骤24.单击"保存"将设置保存到启动配置文件。

IP 48-Port Gigabit PoE Stackable Managed Switch

IPv4-Based ACE								
IPv4-Based ACE Table								
Filter: ACL Name equals to IPv4 ACL V Go								
	Priority	Action	Logging	Time Ra	ange	Protocol	Source IP Ad	dress
				Name	State		IP Address	Wildcard Mask
	2	Permit	Enabled			ICMP	192.168.1.1	0.0.0.255
	Add Edit Delete							
Flag Set presents the flag types in the following order: Urg, Ack, Psh, Rst, Syn, Fin. Set is represent								
IPv4-Based ACL Table								

现在,您应该已在交换机上配置了基于IPv4的ACE。