15454 上 IP 寻址与静态路由的一般问题

目录

简介 先决条件 要求 使用的组件 规则 背景信息 链路级 连接 <u>IP 级连通性</u> 配置15454 排除15454故障 了解15454路由表 排除15454路由表故障 配置路由器 排除路由器故障 排除CTC故障 通过前面板LCD配置15454 IP参数 从前面板LCD输入IP地址 15454 常见 IP 编址情形 IP 方案 1 IP 方案 2 IP 方案 3 IP 方案 4 IP 方案 5 IP 方案 6 <u>IP 方案 7</u> IP 情形故障排除 相关信息

<u>简介</u>

在运行ONS 15454光纤交换机的网络上配置所需的IP地址和静态路由时,您会遇到一些常见问题。 本文档使用有文档记录的实验设置来指导您完成典型的网络配置,并说明这些常见问题的发生位置 。

<u>先决条件</u>

本文档没有任何特定的要求。

<u>使用的组件</u>

本文档不限于特定的软件和硬件版本。

本文档中的信息都是基于特定实验室环境中的设备编写的。本文档中使用的所有设备最初均采用原 始(默认)配置。如果您使用的是真实网络,请确保您已经了解所有命令的潜在影响。

规则

有关文档规则的详细信息,请参阅 Cisco 技术提示规则。

<u>背景信息</u>

本文档从如何建立链路级连接开始,然后介绍如何配置和排除15454、思科路由器和思科传输控制器(CTC)上的IP连接故障。然后,本文档提供了一系列针对最常见IP场景的故障排除指南。

虽然每个IP网络都是唯一的,但本文档使用图1中的网络拓扑来说明如何指导您配置15454 IP网络。 在阅读示例网络的配置步骤后,可以将它们应用到您的特定网络。

通常,您会将15454和个人计算机(PC)插入路由网络各端边缘的交换机中。然后在交换机之间创建 路由网络连接。在图1的拓扑图中,<u>Switch-A</u>和Switch-B代表网络任一端的交换机,而Router-C代表 路由网络。

图1 — 网络拓扑示例

配置ONS 15454以查看PC上的IP地址。个人计算机使用ping和tracert命令验证IP与ONS 15454的连 接。

<u>链路 级 连接</u>

示例网络使用两种以太网电缆,即直通电缆和交叉电缆。此表使您能够验证在各种网络连接之间使 用的以太网电缆类型:

	TCC		包线背板引脚
PC或工作站	/ 直通电缆 /	A1	RJ-45引脚2
		B1	RJ-45引脚1
		A2	RJ-45引脚6
路由器		B2	RJ-45引脚3

集线器或交换机	交叉电缆	A1	RJ-45引脚6
		B1	RJ-45引脚3
		A2	RJ-45引脚2
		B2	RJ-45引脚1

图2显示了直通以太网电缆的示例。

注意:两端的卡扣卡舌位于连接器的背面。

图2 — 直通以太网电缆示例

图3显示了交叉以太网电缆的示例。

注意:两端的卡扣卡舌位于连接器的背面。

示例网络使用如图4所示<u>的电缆</u>。

图4 — 电缆使用

如果您需要排除链路级连接故障,最好从RJ-45端口上的LED开始。

注意:RJ-45端口上的计时通信和控制(TCC)卡上没有LED。

要排除链路级连接故障,请确保检查以下问题:

- 电缆损坏
- 电缆或引脚不正确
- TCC、PC、集线器或路由器上的端口错误(请尝试其他端口或将端口交换出去)
- 速度或双工不正确(TCC的以太网端口为10baseT半双工)

<u>IP 级连通性</u>

您最多可以在15454网元数据库中存储16条静态路由,以便通过路由器为连接到15454的远程 CTC工作站提供IP连接。通过CTC在15454网元上调配静态路由。

注意:当前版本的CTC软件(v2.2.x)将每个15454节点的并发CTC会话数限制为4。版本3.x及更高版 本最多可处理五个并发CTC会话。CTC性能可能因每个会话中的活动量、网络带宽、TCCx卡负载 和DCC连接网络的大小而异。

例如,网络运营中心(NOC)可以通过CTC远程监控15454,同时,现场员工使用单独的CTC会话登录网络15454。

要调配这些静态路由,您需要在15454和CTC工作站中配置更改。下一节提供了如何在15454上为 示例网络拓扑中的路由器链接的CTC工作站调配静态路由的示例。 有关其他典型IP地址方案,请参<u>阅本文档的常</u>见IP编址方案部分。这些场景包含有关路由器和 CTC工作站设置的更多详细信息,这些设置支持15454网络元素上的静态路由调配。

配置15454

完成以下步骤以配置15454:

- 1. 从CTC的"节点"视图中选择"调配">"网络"选项卡。
- 2. 在"静态路由"面板中选择"创建"。系统将显示Create Static Route面板:图5 --- 创建静态路由

Create Static Route面板提供静态路由,使15454能够通过路由器建立通过您在静态路由中指定的目标IP地址到CTC工作站的IP会话。在示例网络中,工作站位于B类网络中,子网掩码为16位。CTC工作站的IP地址是144.254.14.38。15454位于具有八位子网掩码的A类网络中。TCC卡上以太网管理接口(cpm0)的IP地址为10.200.100.11。在Router-C上,与15454位于同一网段的以太网接口(E1)的IP地址为10.200.100.5。图6 — 静态路由

<u>排除15454故障</u>

如果在15454上尝试配置静态路由时遇到问题,请检查以下问题:

- IP地址或子网掩码不正确:同一网络上的接口必须具有位于同一子网内的IP地址才能直接通信。
- 重复的IP地址:IP地址必须唯一。所有地址的网络部分可以相同,但主机部分必须唯一。
- 15454网关节点中的默认网关不正确或缺失:将网关15454节点上的默认路由器配置为相邻路由器的以太网IP地址。
- 15454网关节点中的静态路由不正确或缺失:配置静态路由中的目的IP地址,使其指向分配给 CTC工作站的IP地址。静态路由会自动重分发到所有其他15454节点。

<u>了解15454路由表</u>

为了实现CTC互连,环中所有互连的15454个网络元素形成一个开放最短路径优先(OSPF)区域。节 点使用同步光网络(SONET)数据通信通道(SDCC)链路进行通信。这些元素将各个节点中的路由表 信息通告给DCC连接的其15454个节点。

假设示例网络拓扑中的15454是双向线路交换环(BLSR)环中的四个节点之一(请参阅<u>图7</u>)。

节点将您配置的静态路由通告给环中的其他三个节点。

图8表示左上角15454(10.200.100.11)向环中的其他三个节点通告静态路由。现在,所有节点在其路 由表中共享静态路由。

图8-10.200.100.11通告静态路由

<u>排除15454路由表故障</u>

以下是SDCC连接问题的可能原因:

- 您尚未配置SDCC终端,或未正确配置终端。配置SDCC时,请勿更改SDCC上的区域ID或禁用 OSPF,除非您要将网络划分为不同的OSPF区域以用于管理。将ONS网络与LAN上的OSPF集 成时,通常会使用这些参数。
- 未建立光纤路径(信号丢失(LOS)和帧丢失(LOF)警报和信号降级)。
- •光载波,N级(OC-N)端口未服务。
- 您尚未配置SDCC隧道。

配置路由器

本节扩展了示例网络拓扑以包括四节点BLSR环(请参<u>见图9</u>):

图9 — 使用4节点BLSR的网络拓扑

BLSR中的四个节点形成一个内部OSPF区域,并重分发它们之间获知的静态路由。但是,OSPF区 域不会从每个节点上的TCC卡上的以太网管理接口(cpm0)通告所获知的路由。

路由器C获知15454-1的IP地址10.200.100.11,因为路由器将节点视为直连节点。但是,在BLSR中 形成OSPF区域的其它三个A类子网未直接连接到Router-C,并保持隐藏状态。15454-1不会将这些 节点的路由从cpm0接口通告给Router-C。

注意:从Cisco ONS15454版本3.3开始,代理服务器功能可用。此功能允许网关ONS15454充当网 关后的所有节点的代理。此操作可缓解路由器需要拥有指向网关ONS15454后面所有子网的路由的 需求。

因此,路由器C要求您为路由器未直接连接的三个节点配置静态路由。静态路由的下一跳IP地址已 分配给Router-C直连的15454-1接口cpm0。查看路由器C配置中的静态路由语句,如下所示:

!
hostname Router-C
!
.
interface Ethernet0
ip address 10.200.100.5 255.0.0.0
!
interface Ethernet1
ip address 144.254.14.37 255.255.0.0
!
.
ip route 11.200.100.12 255.255.255 10.200.100.11
ip route 12.200.100.13 255.255.255 10.200.100.11
ip route 13.200.100.14 255.255.255 10.200.100.11
!.
.

line con 0 exec-timeout 0 0 password 7 131200 login line aux 0 line vty 0 4 password 7 010411 login ! end Router-C# <u>图10</u>显示了Router-C上**show ip route**命令的输出。两个以太网接口都直接连接,三个未直接连接的 15454节点可以通过静态路由到达。

图10 — 路由器C上show ip route命令的输出

有关如何定<u>义静态路由</u>的示例,请参阅本文档的IP路由方案5部分。

排除路由器故障

以下是企业网络中需要检查的常见问题:

- 检验CTC工作站的IP子网与15454网关节点之间的IP连接。检查CTC工作站和15454网关节点之间企业Internet中的路由器在CTC工作站IP子网/主网/超网和15454网关节点子网/主网/超网的转发表中是否有条目。从15454网关节点旁的路由器,执行从15454网关节点默认网关到CTC工作站默认网关的ping。
- 为非网关15454节点IP地址子网/主网/超网在与网关节点相邻的路由器15454配置静态路由:从 邻近网关节点15454的路由器Ping每个15454节点。注意:在使用代理服务器功能的网络中,只 有SOCKS V5感知ping应用程序成功。
- 将静态路由重分布到企业网络:检查静态路由是重分发到企业网络动态路由协议,还是在 CTC工作站和15454网关节点之间的每台路由器上静态配置?从CTC工作站Ping每个15454节点

。**注意:**在使用代理服务器功能的网络中,只有SOCKS V5感知ping应用程序成功。验证节点 是否在CTC映射视图中具有名称。换句话说,确保节点不灰显,只显示其IP地址。

<u>排除CTC故障</u>

在运行CTC应用的工作站的DOS命令行提示符下,发出**ping**命令以验证工作站与15454上TCC卡的 以太网管理接口之间的IP可达性。Ping将Internet控制管理协议(ICMP)类型的8个回应请求数据包发 送到您指定的目标主机IP地址。目的主机必须使用ICMP 0类应答数据包进行应答。

注:如果运行Cisco ONS 15454版本3.3或更高版本,并且使用代理服务器功能,则仅对网关NE执行ping和tracert操作成功。您需要SOCKS V5感知Ping和tracert客户端才能到达网关NE后面的任何 网络元素(NE)。

请参<u>见图11</u>,了解可使用ping命令指定的可用操作**数的**列表:

图11 — 可用操作数列表

C:\WINNT\System32\c	md.exe	- 🗆 🗵
C:∖>ping		-
llsage: ping [-t] [- [-r cou [-w tin	-al [-n count] [-] sizel [-f] [-i TTL] [-u TOS] unt] [-s count] [[-j host-list] ¦ [-k host-list]] meuul] destination-list	
Ontions:		
-t -a n count -l size -f -i TIL v TOS -r count -s count -j host-list -k hust-list -w timeout	<pre>Fing the specified host until stopped. To see statistics and continue - type Control-Break; To stop - type Control-C. Resolve addresses to hostnames. Number of echo requests to send. Send buffer size. Set Don't Fragment flag in packet. Time To Live. Type Of Service. Record route for count hops. Timestamp for count hops. Loose source route along host-list. Strict source route along host-list. Timeout in nilliseconds to wait for each reply.</pre>	
G:\>_		-

使用ping将10个ICMP类型8回应请求数据包发送到分配给15454(10.200.100.11)的以太网管理接口的IP地址。 在通过以太网时,还要发送最大以太网数据包大小为1500字节的请求。

图12 — 向10.200.100.11发送10 ICMP类型8回应请求数据包

```
🚾 C:\WINNT\System32\cmd.exe
                                                                                                                                                            - 🗆 🗵
C:∖>
C:∖>
C:∖>ping 10.200.100.11 -n 10 -1 1500
Pinging 10.200.100.11 with 1500 bytes of data:
Request tined out.
Reply from 10.200.100.11:
Reply from 10.200.100.11:
                                                     hytes=1500 time=10ns TTL=63
                                                     bytes=1500
                                                                            time-10na
                                                                                                TTL-63
Reply from 10.200.100.11:
Reply from 10.200.100.11:
Reply from 10.200.100.11:
Reply from 10.200.100.11:
                                                     bytes=1500
bytes=1500
bytes=1500
                                                                            time-10ms
                                                                                                TTL-63
                                                                                                 TTL=63
TTL=63
                                                                            time=10ns
                                                                            time=10ns
Reply from 10.200.100.11:
Reply from 10.200.100.11:
Reply from 10.200.100.11:
Reply from 10.200.100.11:
                                                     bytes -1500
                                                                           time<10ns
                                                                                                TTL-63
Reply from 10.200.100.11: bytes=1500 time<10ns
Reply from 10.200.100.11: bytes=1500 time<10ns
Reply from 10.200.100.11: bytes=1500 time<10ns
                                                     bytes=1500
bytes=1500
                                                                                                 TTL=63
TTL=63
                                                                                                TTL=63
Ping statistics for 10.200.100.11:
Packets: Sent = 10, Received = 9, Lost = 1 (10z loss),
Approximate round trip times in milli-seconds:
Ninimun - Oms, Maximum - 10ms, Average - 5ms
c: >
C∶∖>
C: \searrow
```

如您所见,尽管由于回应请求超时导致10%的丢失,您仍可以成功到达分配给TCC卡上15454的以 太网管理接口的IP地址。

要验证到15454的路径,请在DOS命令行提示符下发出tracert命令(请参<u>见图13</u>)。

图13 — 在DOS提示符下发出tracert命令

C:\WINNT\System32\cmd.exe	- 🗆 🗵
	-
Č: S	
C: >>	
Usage: tracert L-d] L-h naximun_hops] l-j host-list] L-w timeout] target_nam	ie
Options:	
-d Do not resolve addresses to hostnanes.	
-n maximum nops — naximum number of nops to search for target. -j host-list — Loose source route along host-list.	
w timeout Wait tineout milliseconds for each reply.	
C:\>	
C:>>	
ČEČŠ	
C:\>	-
5. 7	

接下来,使用**tracert** 命令指定分配给15454上TCC卡的以太网管理接口的目标IP地址 (10.200.100.11)。

图14 — 指定以太网管理接口的目的IP地址

C:\WINNT\System32\cmd.exe	_ 🗆 🗵
C:\> C:\> C:\> C:\> C:\> C:\>tracert 10.200.100.11	
Tracing route to 10.200.100.11 over a maximum of 30 hops	
1 10 ns <10 ms <10 ms 144.254.14.37 2 <10 ns <10 ms <10 ms 10.200.100.11 Trace complete. C:\>	
	-

在这里,您可以看到目的IP地址距离两跳。第一跳是144.254.14.37,它是分配给CTC工作站所连接 的以太网网段的Ethernet 0接口的IP地址。第二跳是10.200.100.11,该IP地址分配给15454中 TCC卡的以太网管理接口。

如果您在CTC中遇到IP连接问题,请检查以下问题:

- IP地址或子网掩码不正确:同一网络上的接口必须具有位于同一子网内的IP地址才能直接通信。
- 重复的IP地址:IP地址必须唯一。所有地址的网络部分可以相同,但主机部分必须唯一。
- •默认网关或静态路由不正确或缺失。
- 双打磨PC上的意外IP地址:检查CTC应用在双打磨PC上是否看到意外的IP地址。换句话说 ,检查PC上是否安装了双网络接口卡(NIC)。

通过前面板LCD配置15454 IP参数

您可以通过前面板液晶显示器(LCD)上的插槽、状态和端口按钮设置ONS 15454的IP地址、子网掩 码和默认路由器地址。 无需计算机即可完成这些基本操作。

您可以锁定前面板LCD对网络配置的访问。单击CTC的**"节点"视**图中的"调配">"网络"选项卡。选择 "**Prevent LCD IP Config(防止液**晶屏IP配置)"按钮,然**后单击Apply**。

注:在按钮处于非活动状态30秒后,LCD恢复为正常显示模式。

图15 — 前面板液晶屏

<u>从前面板LCD输入IP地址</u>

要通过前面板液晶屏输入IP地址,请完成以下步骤:

- 1. 重复按Slot按钮,直到LCD面板上出现Slot-0。插槽0表示插槽0菜单。
- 2. 重复按Port 按钮以滚动浏览配置菜单,直到出现IP Address选项。
- 3. 按状态**按**钮。
- 4. 按插槽(下一步)按钮,转到需要更改的IP地址数字。所选数字闪烁。
- 5. 按Port(Modify)按钮将IP地址数字循环到正确的数字。图16 修改IP地址中的数字

7. 重复按Port按钮,直到显示Save Configuration选项。图18 — 保存配置选项

8. 按状态按钮选择保存配置选项。系统将显示"保存并重新启动"屏幕。图19 — 保存并重新启动

保存新配置时,TCC卡将重新启动。当TCC卡重**新启动时,"Saving Changes(保存更改**)"LCD将显示几分钟。当LCD屏幕返回正常的交替显示模式时,该过程完成。

15454 常见 IP 编址情形

15454 IP编址通常有七种常见的IP编址方案或配置。在设置IP地址和配置子网时,请参阅以下图例 和核对表。您必须能对每个核对表问题回答"是",以确保所有人都符合所有IP编址准则。如果对任 何问题回答"否",则需要查看本文档的<u>IPSenario故障排除</u>部分。

本部分介绍这七个场景,并为每个场景提供IP核对表。

注意:从版本2.2.0开始,LAN设备不再需要主机路由与通过DCC连接的同一子网中的其他ONS 15454通信。

<u>IP 方案 1</u>

ONS 15454和CTC位于同一子网。所有ONS 15454都连接到LAN A。如果对核对表中的任何问题回答"否",请参阅本文档的IP场景故障排除部分。

图21 — 场景1

<u>场景1的IP核对表:</u>

- ONS 15454、#2和#3的IP地址是否在同一IP子网中?
- •所有IP地址是否都是唯一的?
- •运行CTC的工作站能否自行ping通?
- •CTC工作站与集线器或交换机之间是否存在链路完整性?
- •背板上的LAN绕线引脚或TCC的RJ-45端口是否具有链路完整性?在所有ONS 15454和集线器 或交换机上?
- •所有ONS 15454的集线器或交换机端口是否设置为10 Mbps半双工?
- •您能否从CTC工作#1对ONS、#2和#3执行ping操作?
- 您是否安装了Web浏览器(Netscape Navigator™版本4.08或更高版本,或Internet Explorer™ 4或更高版本)?
- 您是否已安装Java™插件(Microsoft Windows™版本1.2.2.或更高版本,Sun Solaris™版本 1.2.1_03)?
- 是否安装了Java™策略文件?
- 是否使用浏览器连接到ONS 15454的IP地址?
- •您能登录ONS 15454吗?

<u>IP 方案 2</u>

ONS 15454和CTC位于不同的子网。所有ONS 15454都连接到LAN B。如果对核对表中的任何问题 回答"否",请参阅本文档的IP场景故障排除部分。

图22 — 场景2

15454-3 IP address: 192.168.2.30 Subnet Mask: 255.255.255.0 Default Router: 192.168.2.1 Static Routes: N/A

<u>场景2的IP核对表:</u>

- CTC工作站和路由器接口A的IP地址是否位于同一子网中?
- •运行CTC的工作站能否自行ping通?
- •工作站的默认网关是否设置为与路由器A接口相同的IP地址?
- ONS 15454、#2和#3的IP地址是否与路由器的B接口位于同一子网?
- •所有IP地址是否都是唯一的?
- ONS 15454、#2和#3的默认路由器是否设置为路由器B接口的IP地址?
- •工作站与集线器或交换机之间是否存在链路完整性?
- 背板上的LAN绕线引脚或所有节点的TCC RJ-45端口与集线器/交换机之间是否存在链路完整性 ?
- •路由器端口与其集线器或交换机之间是否存在链路完整性?
- •所有ONS 15454上的集线器或交换机端口是否设置为10 Mbps半双工?
- •您能否从CTC工作#1对ONS、#2和#3执行ping操作?
- 您是否安装了Web浏览器(Netscape Navigator™版本4.08或更高版本,或Internet Explorer™ 4或更高版本)?
- 是否已安装Java™插件(Microsoft Windows™版1.2.2或更高版本,Sun Solaris™版1.2.1_03版)?
- 是否安装了Java™策略文件?
- 是否使用浏览器连接到ONS 15454的IP地址?
- •您能登录ONS 15454吗?

<u>IP 方案 3</u>

CTC和所有ONS 15454位于同一子网。15454-1连接到LAN A,15454-2和3位于远程站点。如果对 核对表中的任何问题的回答是"否",请参阅本文<u>档的IP场景</u>故障排除部分。

图23—场景3

<u>场景3的IP核对表:</u>

- •工作站IP地址和所有ONS 15454的IP地址是否位于同一IP子网中?
- •所有IP地址是否都是唯一的?
- •运行CTC的工作站能否自行ping通?
- •CTC工作站上是否为每个远程节点(15454-2和3)配置了主机路由?
- CTC工作站与集线器或交换机之间是否存在链路完整性?
- 背板或活动TCC RJ-45端口上的LAN绕线引脚与集线器或交换机之间是否存在链路完整性?
- 集线器或交换机端口是否设置为10 Mbps半双工?
- 您能否从CTC工作站ping通ONS 15454 #1?
- •所有节点上的光纤中继端口是否都在服务中?
- 是否为所有正在使用的光纤中继端口启用DCC?
- •您能否从CTC工作站ping远程节点(ONS #2和#3)?
- 您是否安装了Web浏览器(Netscape Navigator™版本4.08或更高版本,或Internet Explorer™ 4或更高版本)?
- 是否已安装Java™插件(Microsoft Windows™版1.2.2或更高版本,Sun Solaris™版1.2.1_03版)?
- 是否安装了Java™策略文件?
- 是否使用浏览器连接到ONS 15454的IP地址?
- •您能登录ONS 15454吗?

<u>IP 方案 4</u>

CTC和ONS 15454-1位于同一子网,而15454-2和3位于不同的子网。15454-1连接到LAN A,ONS 15454-2和3位于远程站点。如果对核对表中的任何问题的回答是"否",请参阅本文<u>档的IP场景</u>故障 排除部分。

图24 — 场景4

<u>场景4的IP核对表:</u>

- CTC工作站的IP地址和ONS 15454 #1 IP地址是否位于同一子网中?
- ONS 15454、ONS #1、#2和IP地址是否#3在不同的子网中?
- •所有IP地址是否都是唯一的?
- •运行CTC的工作站能否自行ping通?
- CTC工作站的默认网关是否设置为与ONS 15454 #1相同的IP地址?
- •工作站与集线器或交换机之间是否存在链路完整性?
- 背板或活动TCC RJ-45端口上的LAN绕线引脚与集线器或交换机之间是否存在链路完整性?
- •集线器或交换机端口是否设置为10 Mbps半双工?
- 您能否从CTC工作站ping通ONS 15454 #1?
- •所有节点上的光纤中继端口是否都在服务中?
- 是否为所有正在使用的光纤中继端口启用DCC?
- •您能否从CTC工作站ping远程节点(ONS #2和#3)?
- 您是否安装了Web浏览器(Netscape NavigatorTM 4.08版或更高版本或Internet ExplorerTM 4及更高版本)?
- 是否已安装JavaTM插件(Microsoft WindowsTM版本1.2.2或更高版本,Sun SolarisTM版本 1.2.1_03)?
- 是否已安装JavaTM策略文件?
- 是否使用浏览器连接到ONS 15454的IP地址?
- •您能登录ONS 15454吗?

<u>IP 方案 5</u>

CTC和每个15454位于不同的子网。15454-1连接到LAN A,ONS 15454-2和3位于远程站点。如果 对核对表中的任何问题的回答是"否",请参阅本文<u>档的IP场景</u>故障排除部分。

图25 — 场景5

<u>场景5的IP核对表:</u>

- CTC工作站的IP地址和路由器的A接口是否位于同一子网中?
- •运行CTC的工作站能否自行ping通?
- •工作站的默认网关是否设置为本地路由器A接口的IP地址?
- ONS 15454、#2和#3的IP地址是否位于不同的子网?
- •所有IP地址是否都是唯一的?
- ONS 15454 #1的默认路由器是否设置为与路由器的B接口相同的IP地址?
- ONS 15454 #1是否具有指向CTC工作站的静态路由?
- 路由器是否为所有远程ONS 15454配置了主机路由?
- •工作站与集线器或交换机之间是否存在链路完整性?
- 背板或TCC RJ-45端口上的LAN绕线引脚与集线器或交换机之间是否存在链路完整性?
- 路由器端口与其集线器或交换机之间是否存在链路完整性?
- ONS 15454 #1的集线器或交换机端口是否设置为10 Mbps半双工?
- 您能否从CTC工作站ping通ONS 15454 #1?
- •所有节点上的光纤中继端口是否都在服务中?
- 是否为所有正在使用的光纤中继端口启用DCC?
- 您能否从CTC工作站ping远程节点(ONS #2和#3)?
- 您是否安装了Web浏览器(Netscape NavigatorTM 4.08版或更高版本,或Internet Explorer 4TM及更高版本)?
- 是否已安装JavaTM插件(Microsoft WindowsTM版本1.2.2或更高版本, Sun SolarisTM版本 1.2.1_03)?
- 是否已安装JavaTM策略文件?
- 是否使用浏览器连接到ONS 15454的IP地址?
- •您能登录ONS 15454吗?

<u>IP 方案 6</u>

CTC位于不同的子网,所有15454都位于同一子网。15454-1连接到LAN A,15454-2和3位于远程 站点。如果对核对表中的任何问题的回答是"否",请参阅本文<u>档的IP场景</u>故障排除部分。

<u>场景6的IP核对表:</u>

- CTC工作站和路由器A接口的IP地址是否位于同一子网中?
- •运行CTC的工作站能否自行ping通?
- •工作站的默认网关是否设置为与本地路由器的A接口相同的IP地址?
- ONS 15454、#2和#3的IP地址是否与本地路由器的B接口位于同一子网?
- •所有IP地址是否都是唯一的?
- ONS 15454 #1的默认路由器是否设置为路由器B接口的IP地址?
- 工作站与集线器或交换机之间是否存在链路完整性?
- 背板或TCC RJ-45端口上的LAN绕线引脚与集线器或交换机之间是否存在链路完整性?
- •路由器端口与其集线器或交换机之间是否存在链路完整性?
- ONS 15454 #1的集线器或交换机端口是否设置为10 Mbps半双工?
- 您能否从CTC工作站ping通ONS 15454 #1?
- •所有节点上的光纤中继端口是否都在服务中?
- 是否为所有正在使用的光纤中继端口启用DCC?
- 您能否从CTC工作站ping远程节点(ONS #2和#3)?
- 您是否安装了Web浏览器(Netscape NavigatorTM 4.08版或更高版本或Internet ExplorerTM 4及更高版本)?
- 是否已安装JavaTM插件(Microsoft WindowsTM版本1.2.2或更高版本,Sun SolarisTM版本 1.2.1_03)?
- 是否已安装JavaTM策略文件?
- 是否使用浏览器连接到ONS 15454的IP地址?
- •您能登录ONS 15454吗?

<u>IP 方案 7</u>

CTC 1和2以及所有15454都位于同一IP子网。ONS 15454-1和CTC 1连接到LAN A。ONS 15454-2和CTC 2连接到LAN B。如果对核对表中的任何问题回答"否",请参阅本文档的<u>IP场景故障排除</u>部 分。

图27—场景7

<u>场景7的IP核对表:</u>

- •两个CTC工作站的IP地址和所有ONS 15454的IP地址是否位于同一子网中?
- •所有IP地址是否都是唯一的?
- ONS 15454是否#1有指向CTC工作站的静态路#1?
- ONS 15454是否#2有指向CTC工作站的静态路#2?
- •运行CTC的工作站能否自行ping通?
- •工作站与集线器或交换机之间是否存在链路完整性?
- 背板(或主用TCC)上的绕线引脚与集线器或交换机之间是否存在链路完整性?
- •集线器或交换机端口是否设置为10 Mbps半双工?
- 您能否从CTC工作站ping通ONS 15454 #1?
- •所有节点上的光纤中继端口是否都在服务中?
- •是否为所有正在使用的光纤中继端口启用DCC?
- •您能否从CTC工作站ping远程节点(ONS #2和#3)?
- ・您是否安装了Web浏览器(Netscape Navigator™版本4.08或更高版本或Internet Explorer™ 4及 更高版本)?
- 是否已安装Java™插件(Microsoft Windows™版1.2.2或更高版本,Sun Solaris™版1.2.1_03版)?
- 是否安装了Java™策略文件?
- 是否使用浏览器连接到ONS 15454的IP地址?
- •您能登录ONS 15454吗?

IP 情形故障排除

如果您对IP方案检查表中的任何问题回答"否",或遇到任何IP问题,请查找本节中的解决方案。

问题	解决方案
运行CTC的工作站无法	●检验工作站的IP地址。
ping通自身。	●如果无法ping通,则表明您

	的工作站有问题。请与网络 管理员联系。
工作站与集线器或交换 机之间没有链路完整性 。	 检验是否使用直通以太网电缆。 验证集线器或交换机上的端口是否有链路完整性指示器
	。 • 更改以太网电缆。 • 确认集线器或交换机端口已 启用。 • 检验绕线连接。 • 请与网络管理员联系。
集线器或交换机与ONS 15454的LAN线圈或RJ- 45端口之间不存在链路 完整性。	 检验是否使用交叉以太网电缆。 更改以太网电缆。 确认集线器/交换机端口已启用。 检验绕线连接。 请与网络管理员联系。
您不知道连接到ONS 15454的集线器或交换 机端口是否正确设置为 10 Mbps半双工。	• 请与网络管理员联系。
尽管工作站可以成功 ping通其他设备,但工 作站无法ping通特定 15454。	 验证工作站上指定的ONS 15454的IP地址是否与 LCD屏幕上显示的IP地址 15454匹配。 检查工作站、路由器和任何 CTC静态路由的路由。 检查光纤卡端口是否处于服 务状态并启用了DCC。
Java™策略文件未安装 或文件在Java™插件之 前安装。	• 每15454随附的软件CD上提 供策略文件和安装说明。
您不知道ONS 15454、 #Y和#Z的IP地址是位于 同一子网还是位于不同 子网。	• 请与网络管理员联系。
您不知道ONS 15454的 默认路由器条目是否正 确设置为与下一跳路由 器接口的IP地址匹配。	 在CTC的帮助下,验证在 15454上指定的默认路由器 配置是否与下一跳路由器接 口的已验证IP地址匹配。 请参阅本文档的静态路由调 配部分。 路由器上的端口与集线器或 交换机之间是否存在链路完 整性?

	•联系网络管理员,验证下一 跳路由器接口的IP地址。
路由器端口和集线器或 交换机之间不存在链路 完整性。	•请与网络管理员联系。
您不知道15454上的光 纤中继端口是否在运行 。	 • 检验中继端口是否通过 CTC处于服务状态。请完成 以下步骤:单击 "Provisioning(调配)"选项卡 。单击"行"子标签。单击"状 态"列。验证端口是否设置为 服务中(IS)。
您不知道DCC是否在服 务中光纤中继端口上启 用。	• 验证是否通过CTC启用 DCC。请完成以下步骤: 转 到光卡的卡级视图。单击 "Provisioning(调配) "选项卡 。单击Sonet DCC 子选 项卡 。验证是否已列出光卡。
Web浏览器未连接到 15454,但已成功连接 到其他站点。	 验证工作站上指定的 15454的IP地址是否与ONS 15454的LCD屏幕上显示的 IP地址匹配。 确认工作站能ping通ONS 15454。
您无法ping远程ONS 15454。	 验证工作站上指定的ONS 15454的IP地址是否与远程 ONS 15454的LCD屏幕上显 示的IP地址匹配。 检查ONS 15454和工作站的 路由。 如果远程15454节点位于不 同的子网上,请检查是否有 从网关15454节点到CTC工 作站的静态路由。 确保未启用代理服务器。如 果已启用代理服务器,请使 用SOCKS V5感知ping应用 。

相关信息

- ONS 15454程序指南版本8 设置CTC网络访问
- Cisco ONS 15400系列技术参考
- <u>技术支持和文档 Cisco Systems</u>