Procedimento ELAM do módulo Nexus 7000 F1

Contents

Introduction <u>Topologia</u> <u>Determine o mecanismo de encaminhamento de entrada</u> <u>Configurar o disparador</u> <u>Iniciar a captura</u> <u>Interpretar os resultados</u> <u>Verificação adicional</u>

Introduction

Este documento descreve as etapas usadas para executar um ELAM em um módulo F1 do Cisco Nexus 7000 (N7K), explica as saídas mais relevantes e descreve como interpretar os resultados.

Tip: Consulte o documento ELAM Overview para obter uma visão geral sobre ELAM.

Topologia

Neste exemplo, um host na VLAN 10 (10.1.1.101 com endereço MAC 0050.56a1.1a01), a porta Eth3/18 envia uma solicitação do Internet Control Message Protocol (ICMP) a um host que também está na VLAN 10 (10.1.1.1.1 com endereço MAC 0050.56a1.1aef), porta Eth3/26. ELAM é usado para capturar esse único quadro de 10.1.1.101 a 10.1.1.102. É importante lembrar que o ELAM permite capturar apenas um único quadro.

Para executar um ELAM no N7K, você deve primeiro se conectar ao módulo apropriado (isso requer o privilégio de administrador de rede):

```
N7K# attach module 3
Attaching to module 3 ...
To exit type 'exit', to abort type '$.'
module-3#
```

Determine o mecanismo de encaminhamento de entrada

Espera-se que o tráfego ingresse no switch na porta **Eth3/18**. Ao verificar os módulos no sistema, você verá que o **Módulo 3** é um módulo F1. É importante lembrar que o N7K é totalmente distribuído e que os módulos, não o supervisor, tomam as decisões de encaminhamento para o tráfego de dataplane.

N7K#	show mo	odule 3		
Mod	Ports	Module-Type	Model	Status
3	32	1/10 Gbps Ethernet Module	N7K-F132XP-15	ok

Para os módulos F1, execute o ELAM no FE (Layer 2, L2, Mecanismo de Encaminhamento) com o codinome **Orion** interno. O N7K F1 tem 16 FEs por módulo, portanto você deve determinar o **Orion** ASIC usado para o FE na porta **Eth3/18**. Insira este comando para verificar:

<pre>module-3# show hardware (some output omitted)</pre>	internal dev-por	ct-map	_
CARD_TYPE: DCE 3 >Front Panel ports:32	32 port 10G		_
Device name	Dev role	Abbr num_inst:	_
> Orion Fwding Driver	DEV_LAYER_2_LOOP	KUP l2lkp 16	+
++++FRONT PAN	NEL PORT TO ASIC	INSTANCE MAP+++	+ +
FP port PHYS MAC_0	l2lkp Queue	SWICHF	•
18 8 8	8 8	1	

Na saída, você pode ver que a porta Eth3/18 está na instância Orion (L2LKP) 8.

```
module-3# elam asic orion instance 8
module-3(orion-elam)#
```

Configurar o disparador

O **Orion** ASIC tem um conjunto muito limitado de acionadores ELAM quando comparado com outros FEs na plataforma N7K. Isso porque F1 é um módulo somente L2. Portanto, ele toma decisões de switching com base nas informações de endereço MAC (ou SwitchID em ambientes FabricPath).

Com o Nexus Operating Systems (NX-OS), você pode usar o caractere de interrogação para separar o disparador do ELAM:

```
module-3(orion-elam)# trigger di field ?
da Destination mac-address
mim_da Destination mac-in-mac-address
mim_sa Source mac-in-mac-address
sa Source mac-address
vlan
```

Para este exemplo, o quadro é capturado com base nos endereços MAC origem e destino no bloco de decisão de entrada.

Note: O módulo F1 não exige acionadores DBUS e RBUS separados.

Aqui está o gatilho:

module-3(orion-elam)# trigger di field sa 0050.56a1.1a01 da 0050.56a1.1aef

Iniciar a captura

O módulo F1 é diferente dos outros módulos N7K, porque o ELAM começa imediatamente após a configuração do gatilho. Para verificar o status do ELAM, insira o comando **status**:

```
module-3(orion-elam)# status
```

Armed

Quando o quadro que corresponde ao disparador é recebido pelo FE, o status do ELAM é mostrado como **Disparado**:

module-3(orion-elam)# status
Triggered

Interpretar os resultados

Para exibir os resultados do ELAM, digite o comando **show capture**. Aqui está o trecho dos dados ELAM mais relevantes para este exemplo (alguns resultados são omitidos):

<pre>module-3(orion-elam)#</pre>	show	capture			
dc3v4_si [11:0]	:		17		
vlanx	:		a		
di	:		1e	\mathbf{or}	1f
res_eth_da	:		5056a11aef		
res_eth_sa	:		5056a11a01		

Note: Com o módulo F1, os dados ELAM usados para tomar a decisão de encaminhamento e os dados que contêm o resultado de encaminhamento são combinados na mesma saída. Além disso, observe que o formato de endereço MAC na saída ELAM não inclui zeros pendentes.

Destination MAC (res_eth_da) 5056allaef = 0050.56al.laef
Source MAC (res_eth_sa) 5056alla01 = 0050.56al.la01

Com essa saída, você pode verificar a LTL (Local Target Logic) de origem (dc3v4_si), o LTL de

destino (di), a VLAN (vlanx) e os endereços MAC de origem e destino (5056a11a01 e 5056a11aef , respectivamente).

O LTL de origem (**dc3v4_si**) representa a porta na qual o quadro é recebido. O ELAM F1 exibe dois resultados para o LTL de destino (**1e ou 1f**). Isso ocorre porque o analisador ELAM não pode ler o bit menos significativo dos dados ELAM, o que produz um resultado ambíguo. Portanto, a Cisco recomenda que você valide a entrada do endereço MAC do hardware para o endereço de destino e verifique-a com o LTL de destino no ELAM.

N7K# show system internal pixm info ltl 0x17 Type LTL

PHY_PORT Eth3/18

A saída mostra que o LTL de origem de **0x17** mapeia para a porta **Eth3/18**. Isso confirma que o quadro é recebido na porta **Eth3/18**.

<pre>module-3# show hardware mac address-table fe 8 address 0050.56a1.1aef vlan 10 vdc 1</pre>						Ee 8	
(some	(some output omitted)						
FE +-	Valio	a pi 	BD	 -+	MAC	Ind	dex +
8	1	0 3	34	0050.5	6a1.1aef	0x000	lf
N7К# Туре	show	syster	n int LTL	ernal p	ixm info	ltl 0x	lf

PHY_PORT Eth3/26

Com essa saída, você pode verificar se a instância Orion 8 (o FE que toma a decisão de encaminhamento para Eth3/18) tem uma entrada de endereço MAC de hardware de 0x1f para o endereço MAC de destino 0050.56a1.1aef. Esse índice também é o LTL de destino (di) nos dados de ELAM F1.

Além disso, você pode verificar se o LTL **0x1f** mapeia para a porta **Eth3/26**. Isso confirma que o quadro é enviado da porta **Eth3/26**.

Verificação adicional

Para verificar como o switch aloca o pool LTL, insira o comando **show system internal pixm info Itlregion**. A saída desse comando é útil para entender a finalidade de um LTL se ele não for combinado a uma porta física. Um bom exemplo disso é um LTL **Drop**:

SUP Inband LTL	32	0x0400	to 0x041f
MD Flood LTL	1	0x0420	
Central R/W	1	0x0421	
UCAST Pool	1536	0x0422	to 0x0a21
PC Pool	1720	0x0a22	to 0x10d9
LC CPU Pool	32	0x1152	to 0x1171
EARL Pool	72	0x10da	to 0x1121
SPAN Pool	48	0x1122	to 0x1151
UCAST VDC Use Pool	16	0x1172	to 0x1181
UCAST Generic Pool	30	0x1182	to 0x119f
LISP Pool	4	0x1198	to 0x119b
Invalid SI	1	0x119c	to 0x119c
ESPAN SI	1	0x119d	to 0x119d
Recirc SI	1	0x119e	to 0x119e
Drop DI	2	0x119f	to 0x11a0
UCAST (L3_SVI_SI) Region	31	0x11a1	to 0x11bf
UCAST (Fex/GPC/SVI-ES) 3	648 0x11c0 to	0x1fff	
UCAST Reserved for Future Use 3	Region 2048	0x2000	to 0x27ff
=====> UCAST 1	MCAST BOUNDARY <====		=========
VDC OMF Pool	32	0x2800	to 0x281f