Solução de problemas do protocolo Spanning Tree em um switch Nexus 5000 Series

Contents

Introduction Prerequisites Requirements Componentes Utilizados Troubleshoot Raiz STP Interface STP Interface STP Investigação de BPDU com Ethanalyzer Convergência de STP Mapeamento externo de VLAN Depurações de STP O Nexus 5000 não processou BPDUs

Introduction

Este documento descreve vários métodos para solucionar problemas comuns relacionados ao Spanning Tree Protocol (STP).

Prerequisites

Requirements

A Cisco recomenda que você tenha conhecimento destes tópicos:

- CLI do sistema operacional Nexus
- STP

Componentes Utilizados

Este documento não se restringe a versões de software e hardware específicas.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Troubleshoot

Esta seção aborda alguns métodos para solucionar problemas comuns com o STP.

Raiz STP

Para solucionar um problema de STP, é fundamental saber qual switch é atualmente a raiz. O comando para mostrar a raiz do STP em um switch Nexus 5000 Series é:

Nexus-5000**# show spanning-tree vlan 1** VLAN0001 Spanning tree enabled protocol rstp Root ID Priority 32769 Address c84c.75fa.6000 This bridge is the root Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32769 (priority 32768 sys-id-ext 1) Address c84c.75fa.6000 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aqui estão alguns outros comandos relevantes:

Nexus-5000# show spanning-tree vlan 1 detail Nexus-5000# show spanning-tree vlan 1 summary

Depois de determinar quem é a raiz atual, você pode verificar o histórico de eventos para ver se ele foi alterado e de onde as Notificações de alteração de topologia se originam.

```
Nexus-5000# show spanning-tree internal event-history tree 1 brief
2012:11:06 13h:44m:20s:528204us T_EV_UP
VLAN0001 [0000.0000.0000 C 0 A 0 R none P none]
2012:11:06 13h:44m:21s:510394us T_UT_SBPDU
VLAN0001 [8001.547f.ee18.e441 C 0 A 0 R none P Po1]
2012:11:06 13h:44m:21s:515129us T_EV_M_FLUSH_L
VLAN0001 [1001.001b.54c2.5a42 C 6 A 5 R Po1 P none]
2012:11:06 13h:44m:23s:544632us T_EV_M_FLUSH_R
VLAN0001 [1001.001b.54c2.5a42 C 6 A 5 R Po1 P Po1]
2012:11:06 13h:44m:24s:510352us T_EV_M_FLUSH_R
VLAN0001 [1001.001b.54c2.5a42 C 6 A 5 R Po1 P Po1]
```

Tip: Aqui estão algumas definições para acrônimos que aparecem na saída dos comandos. **SBPDU:** Unidade de dados de protocolo de ponte superior recebida; **FLUSH_L:** descarga local; **FLUSH_R:** Liberar do switch remoto.

Note: As versões do NX-OS anteriores à versão 5.1(3)N1(1) não registram mais de 149 eventos e o log não é executado.

Esse comando é usado para exibir os eventos de uma interface.

Nexus-5000# show spanning-tree internal event-history tree 1 interface ethernet 1/3 brief 2012:11:05 13h:42m:20s:508027us P_EV_UP Eth1/3 [S DIS R Unkw A 0 Inc no] 2012:11:05 13h:42m:20s:508077us P_STATE Eth1/3 [S BLK R Desg A 0 Inc no] 2012:11:05 13h:42m:20s:508294us P_STATE Eth1/3 [S LRN R Desg A 0 Inc no] 2012:11:05 13h:42m:20s:508326us P_STATE Eth1/3 [S FWD R Desg A 0 Inc no]

Esse comando é usado para investigar alterações de STP em uma interface. Esta saída oferece muitos detalhes:

Nexus-5000# show spanning-tree internal info tree 1 interface port-channel 11 ----- STP Port Info (vdc 1, tree 1, port Pol1) -----dot1d info: port_num=4106, ifi=0x1600000a (port-channel11) ISSU FALSE non-disr, prop 0, ag 0, flush 0 peer_not_disputed_count 0 if_index 0x1600000a namestring port-channel11 cut to save space stats fwd_transition_count1bpdus_in40861bpdus_out40861config_bpdu_in0rstp_bpdu_in40861tcn_bpdu_in0config_bpdu_out0rstp_bpdu_out40861tcn_bpdu_out0 config_bpdu_out 0 0 bpdufilter_drop_in bpduguard_drop_in 0 err_dropped_in 0 sw_flood_in 0 cut to save space

Investigação de BPDU com Ethanalyzer

Esta seção descreve como usar o Ethanalyzer para capturar BPDUs:

```
Ethanalyzer local interface inbound-hi display-filter "vlan.id == 1 && stp"

Example:

Nexus-5000# ethanalyzer local interface inbound-hi display-filter "vlan.id

== 1 && stp"

Capturing on eth4

2013-05-11 13:55:39.280951 00:05:73:f5:d6:27 -> 01:00:0c:cc:cc:cd STP RST.

Root = 33768/00:05:73:ce:a9:7c Cost = 1 Port = 0x900a

2013-05-11 13:55:40.372434 00:05:73:ce:a9:46 -> 01:00:0c:cc:cc:cd STP RST.

Root = 33768/00:05:73:ce:a9:7c Cost = 0 Port = 0x900a

2013-05-11 13:55:41.359803 00:05:73:f5:d6:27 -> 01:00:0c:cc:cc:cd STP RST.

Root = 33768/00:05:73:ce:a9:7c Cost = 1 Port = 0x900a

2013-05-11 13:55:42.372405 00:05:73:ce:a9:46 -> 01:00:0c:cc:cc:cd STP RST.

Root = 33768/00:05:73:ce:a9:7c Cost = 1 Port = 0x900a

2013-05-11 13:55:42.372405 00:05:73:ce:a9:46 -> 01:00:0c:cc:cc:cd STP RST.

Root = 33768/00:05:73:ce:a9:7c Cost = 0 Port = 0x900a
```

Para ver pacotes detalhados, use o comando detail:

```
Nexus-5000# ethanalyzer local interface inbound-hi detail display-filter
"vlan.id == 1 && stp"
Capturing on eth4
Frame 7 (68 bytes on wire, 68 bytes captured)
   Arrival Time: May 11, 2013 13:57:02.382227000
   [Time delta from previous captured frame: 0.000084000 seconds]
   [Time delta from previous displayed frame: 1368280622.382227000 seconds]
```

```
[Time since reference or first frame: 1368280622.382227000 seconds]
  Frame Number: 7
  Frame Length: 68 bytes
  Capture Length: 68 bytes
  [Frame is marked: False]
  [Protocols in frame: eth:vlan:llc:stp]
Ethernet II, Src: 00:05:73:ce:a9:46 (00:05:73:ce:a9:46), Dst: 01:00:0c:cc:cc:cd
(01:00:0c:cc:cc:cd)
  Destination: 01:00:0c:cc:cc:cd (01:00:0c:cc:cc:cd)
      Address: 01:00:0c:cc:cd (01:00:0c:cc:cd)
      .... = IG bit: Group address (multicast/broadcast)
      .... ..0. .... .... .... = LG bit: Globally unique address
(factory default)
  Source: 00:05:73:ce:a9:46 (00:05:73:ce:a9:46)
      Address: 00:05:73:ce:a9:46 (00:05:73:ce:a9:46)
      .... ...0 .... .... = IG bit: Individual address (unicast)
      .... ..0. .... .... = LG bit: Globally unique address
(factory default)
  Type: 802.10 Virtual LAN (0x8100)
802.10 Virtual LAN
  111. .... = Priority: 7
   \dots 0 \dots \dots \dots = CFI: 0
  .... 0000 0000 0001 = ID: 1
  Length: 50
Logical-Link Control
  DSAP: SNAP (0xaa)
  IG Bit: Individual
  SSAP: SNAP (0xaa)
  CR Bit: Command
  Control field: U, func=UI (0x03)
      000. 00.. = Command: Unnumbered Information (0x00)
      .... ..11 = Frame type: Unnumbered frame (0x03)
  Organization Code: Cisco (0x00000c)
  PID: PVSTP+ (0x010b)
Spanning Tree Protocol
  Protocol Identifier: Spanning Tree Protocol (0x0000)
  Protocol Version Identifier: Rapid Spanning Tree (2)
  BPDU Type: Rapid/Multiple Spanning Tree (0x02)
  BPDU flags: 0x3c (Forwarding, Learning, Port Role: Designated)
      0.... = Topology Change Acknowledgment: No
      .0... = Agreement: No
      ..1. .... = Forwarding: Yes
      ...1 .... = Learning: Yes
      .... 11.. = Port Role: Designated (3)
      .... ..0. = Proposal: No
      .... 0 = Topology Change: No
  Root Identifier: 33768 / 00:05:73:ce:a9:7c
  Root Path Cost: 0
  Bridge Identifier: 33768 / 00:05:73:ce:a9:7c
  Port identifier: 0x900a
  Message Age: 0
  Max Age: 20
  Hello Time: 2
  Forward Delay: 15
  Version 1 Length: 0
```

Para gravar essas informações em um arquivo PCAP, use este comando:

Nexus-5000# ethanalyzer local interface inbound-hi display-filter
"vlan.id == 1 && stp" write bootflash:bpdu.pcap
Capturing on eth4
3 << Lists how many packets were captured.</p>
Nas capturas de BPDU, o endereço MAC origem é o endereço MAC da interface do dispositivo da

extremidade oposta.

Na captura do Ethanalyzer, a porta aparece em um formato hexadecimal. Para identificar o número da porta, é necessário primeiro converter o número em hexadecimal:

0x900a (do rastreamento anterior) = 36874

Este é o comando que decodifica esse número em uma porta:

Nesse caso, é o canal de porta 11.

Convergência de STP

Se precisar investigar a convergência do STP, use o comando **show spanning-tree internal interactions**. Esse comando fornece informações sobre os eventos que dispararam as alterações do STP. É importante coletar essas informações assim que o problema ocorrer, pois os registros são grandes e são finalizados com o tempo.

```
Nexus-5000#show spanning-tree internal interactions
- Event:(null), length:123, at 81332 usecs after Sat May 11 12:01:47 2013
Success: pixm_send_set_mult_cbl_vlans_for_multiple_ports, num ports 1
VDC 1, state FWD, rr_token 0x21b9c3 msg_size 584
- Event:(null), length:140, at 81209 usecs after Sat May 11 12:01:47 2013
vb_vlan_shim_set_vlans_multi_port_state(2733): Reg (type=12) to PIXM
vdc 1, inst 0, num ports 1, state FWD
[Po17 v 800-803,999-1000]
- Event:(null), length:123, at 779644 usecs after Sat May 11 12:01:46 2013
Success: pixm_send_set_mult_cbl_vlans_for_multiple_ports, num ports 1
VDC 1, state FWD, rr_token 0x21b99a msg_size 544<
- Event:(null), length:127, at 779511 usecs after Sat May 11 12:01:46 2013
vb_vlan_shim_set_vlans_multi_port_state(2733): Req (type=12) to PIXM
vdc 1, inst 0, num ports 1, state FWD
[Po17 v 300]
- Event:(null), length:123, at 159142 usecs after Sat May 11 12:01:32 2013
Success: pixm_send_set_mult_cbl_vlans_for_multiple_ports, num ports 1
VDC 1, state LRN, rr_token 0x21b832 msg_size 584
- Event:(null), length:140, at 159023 usecs after Sat May 11 12:01:32 2013
vb_vlan_shim_set_vlans_multi_port_state(2733): Reg (type=12) to PIXM
vdc 1, inst 0, num ports 1, state LRN
[Po17 v 800-803,999-1000]
- Event:(null), length:123, at 858895 usecs after Sat May 11 12:01:31 2013
Success: pixm_send_set_mult_cbl_vlans_for_multiple_ports, num ports 1
VDC 1, state LRN, rr_token 0x21b80b msg_size 544
- Event:(null), length:127, at 858772 usecs after Sat May 11 12:01:31 2013
vb_vlan_shim_set_vlans_multi_port_state(2733): Reg (type=12) to PIXM
vdc 1, inst 0, num ports 1, state LRN
[Po17 v 300]
```

Mapeamento externo de VLAN

Os switches Nexus 5000 Series usam VLANs internas para mapear para números de VLAN externos para encaminhamento. Às vezes, o ID da VLAN é o ID da VLAN interna. Para obter o mapeamento para uma VLAN externa, insira:

Nexus-5000# show platform afm info global Gatos Hardware version 0 Hardware instance mapping ------Hardware instance: 0 asic id: 0 slot num: 0 ----- cut to save space -----Hardware instance: 12 asic id: 1 slot num: 3 AFM Internal Status _____ [unknown label]: 324 [no free statistics counter]: 2 [number of verify]: 70 [number of commit]: 70 [number of request]: 785 [tcam stats full]: 2 Vlan mapping table Ext-vlan: 1 - Int-vlan: 65

Depurações de STP

Outra maneira de solucionar problemas do STP é usar depurações. No entanto, o uso de depurações STP pode causar um pico no uso da CPU, o que causa preocupações em alguns ambientes. Para reduzir drasticamente o uso da CPU durante a execução de depurações, use um filtro de depuração e uma atividade de log para um arquivo de log.

Crie o arquivo de log, que é salvo no log do diretório.

```
Nexus-5000#debug logfile spanning-tree.txt
Nexus-5548P-L3# dir log:
31 Nov 06 12:46:35 2012 dmesg
----- cut to save space----
7626 Nov 08 22:41:58 2012 messages
0 Nov 08 23:05:40 2012 spanning-tree.txt
4194304 Nov 08 22:39:05 2012 startupdebug
```

Execute a depuração.

Nexus-5000# debug spanning-tree bpdu_rx interface e1/30 <<<setup your spanning-tree for bpdus Nexus-5000# copy log:spanning-tree.txt bootflash:

Exemplo do arquivo de log:

O Nexus 5000 não processou BPDUs

Para solucionar esse problema, verifique o histórico de eventos para determinar se o switch Nexus 5000 Series assumiu a raiz. O Nexus 5000 assume a raiz se ele não processou BPDUs ou não os recebeu. Para investigar qual é a causa, você deve determinar se há outros switches conectados à ponte designada que também tenham esse problema. Se nenhuma outra ponte tiver o problema, é mais provável que o Nexus 5000 não tenha processado as BPDUs. Se outras bridges tiverem o problema, é mais provável que a bridge não tenha enviado as BPDUs.

Note: Coisas a serem lembradas ao solucionar problemas de STP e de canal de porta virtual (vPC). Somente o vPC Primary envia BPDUs. Quando o secundário do vPC é a raiz do STP, o Primário ainda envia as BPDUs. Se a raiz estiver conectada por meio de um vPC, somente os contadores de BPDU Rx serão incrementados primários, mesmo quando o Secundário os receber.