Quedas de saída do Nexus 3500 e QoS de buffer

Contents

Introduction **Metodologia** Verifique se há quedas de saída Determine se as quedas são unicast ou multicast Determine qual buffer de saída é usado Verifique o monitoramento de buffer ativo Incremento Ativo de Contadores Breve saída Saída detalhada Gerar um registro quando um limite é cruzado IDs de bug notáveis da Cisco Perguntas mais freqüentes Apêndice - Informações do recurso Gerenciamento de buffer Programação Receptor lento multicast Monitoramento de buffer ativo Implementação de hardware Implementação de software

Introduction

Este documento descreve os comandos usados para solucionar problemas do tipo de tráfego descartado na plataforma Nexus 3500 e no buffer de saída (OB) no qual esse tráfego é descartado.

Metodologia

- 1. Verifique se há quedas de saída
- 2. Determine se as quedas são unicast ou multicast
- 3. Determine qual buffer de saída é usado
- 4. Verifique o monitoramento de buffer ativo

Verifique se há quedas de saída

Verifique as estatísticas da interface física para determinar se o tráfego é descartado na direção de saída. Determine se o contador "output discard" na direção TX é incrementado e/ou diferente de zero.

```
Nexus3548# show interfce Eth1/7
Ethernet1/7 is up
Dedicated Interface
Hardware: 100/1000/10000 Ethernet, address: a44c.116a.913c (bia a44c.116a.91ee)
Description: Unicast Only
Internet Address is 1.2.1.13/30
MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec
reliability 255/255, txload 35/255, rxload 1/255
Encapsulation ARPA
full-duplex, 1000 Mb/s, media type is 1G
Beacon is turned off
Input flow-control is off, output flow-control is off
Rate mode is dedicated
Switchport monitor is off
EtherType is 0x8100
Last link flapped 00:03:48
Last clearing of "show interface" counters 00:03:55
 1 interface resets
 30 seconds input rate 200 bits/sec, 0 packets/sec
 30 seconds output rate 0 bits/sec, 0 packets/sec
Load-Interval #2: 5 minute (300 seconds)
   input rate 40 bps, 0 pps; output rate 139.46 Mbps, 136.16 Kpps
RX
   1 unicast packets 118 multicast packets 0 broadcast packets
   119 input packets 9830 bytes
   0 jumbo packets 0 storm suppression bytes
   0 runts 0 giants 0 CRC 0 no buffer
   0 input error 0 short frame 0 overrun 0 underrun 0 ignored
   0 watchdog 0 bad etype drop 0 bad proto drop 0 if down drop
   0 input with dribble 0 input discard
   0 Rx pause
ТΧ
   23605277 unicast packets 0 multicast packets 0 broadcast packets
   23605277 output packets 3038908385 bytes
   0 jumbo packets
   0 output errors 0 collision 0 deferred 0 late collision
   0 lost carrier 0 no carrier 0 babble 11712542 output discard
   0 Tx pause
```

Determine se as quedas são unicast ou multicast

Quando for determinado que a interface descarta o tráfego, insira o **comando show queuing interface** <**x**/**y**> para descobrir se o tráfego descartado é multicast ou unicast. Nas versões anteriores a 6.0(2)A3(1), a saída é semelhante a:

```
Nexus3548# show queuing interface Eth1/7
Ethernet1/7 queuing information:
TX Oueuing
   qos-group sched-type oper-bandwidth
              WRR
                             100
       0
RX Oueuing
  Multicast statistics:
                                               : 0
      Mcast pkts dropped
   Unicast statistics:
   qos-group 0
   HW MTU: 1500 (1500 configured)
   drop-type: drop, xon: 0, xoff: 0
   Statistics:
       Ucast pkts dropped
                                                : 11712542
```

Na versão 6.0(2)A3(1) e posterior, a saída é semelhante a:

```
Nexus3548# show queuing interface Eth1/7
Ethernet1/7 queuing information:
    qos-group sched-type oper-bandwidth
        0 WRR 100
Multicast statistics:
        Mcast pkts dropped : 0
Unicast statistics:
        qos-group 0
HW MTU: 1500 (1500 configured)
        drop-type: drop, xon: 0, xoff: 0
        Statistics:
Ucast pkts dropped : 11712542
```

Note: Se o receptor lento de multicast estiver configurado para a porta, consulte para obter informações sobre o recurso, as quedas não serão rastreadas com o comando show queuing interface Eth<x/y> devido a uma limitação de hardware. Consulte o bug da Cisco ID CSCuj21006.

Determine qual buffer de saída é usadoNo Nexus 3500, há três pools de buffer usados na direção de saída. A saída do comando show hardware internal mtc-usd info port-mapping fornece as informações de mapeamento.

Nexus3548# show hardware internal mtc-usd info port-mapping

OB Ports to Front Ports: ----- OB0 ----------- OB1 ----------- OB2 ------45 47 21 23 09 11 33 35 17 19 05 07 41 43 29 31 13 15 37 39 25 27 01 03 18 20 06 08 42 44 30 32 46 48 22 24 10 12 34 36 14 16 38 40 26 28 02 04 Front Ports to OB Ports: =OB2= =OB1= =OB0= =OB2= =OB1= =OB0= =OB2= =OB1= =OB0= 12 14 04 06 08 10 00 02 00 02 04 06 08 10 12 14 12 14 04 06 08 10 02 02 13 15 05 07 09 11 01 03 01 03 05 07 09 11 13 15 13 15 05 07 09 11 01 03 Front port numbering (i.e. "01" here is e1/1): =OB2= =OB1= =OB0= =OB2= =OB1= =OB0= =OB2= =OB1= =OB0= =OB2= =OB1= =OB0= 01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Note: Text in Red font is _not_ CLI output, it's purely to help those reading the document faster match the actual front port instead of having to manually count up.

A primeira parte dos resultados indica que o pool OB 0 é usado por portas frontais como 45, 46, 47, 48 e assim por diante, e OB1 é usado pelas portas frontais 17, 18 e assim por diante.A segunda parte dos resultados indica que Eth1/1 está mapeado para a porta OB2 12, Eth1/2 está mapeado para a porta OB2 13 e assim por diante.A porta em discussão, Eth1/7, é mapeada para OB1.Consulte a seção <u>Gerenciamento de Buffer</u> neste documento para obter mais

informações. Verifique o monitoramento de buffer ativoConsulte o whitepaper <u>Cisco Nexus</u> <u>3548 Ative Buffer Monitoring</u> e a seção neste documento para obter mais informações sobre esse recurso.Incremento Ativo de ContadoresSe a saída descartar o incremento ativo, habilite o Ative Buffer Monitoring (ABM) com esse comando. Observe que o comando permite monitorar unicast ou multicast, mas não ambos. Além disso, permite configurar o intervalo de amostragem e os valores de limite.

hardware profile buffer monitor [unicast | multicast] {[sampling

Breve saídaQuando o ABM estiver ativado, você poderá exibir os resultados com esse comando. Nexus3500# show hardware profile buffer monitor interface e1/7 brief Brief CLI issued at: 09/30/2013 19:43:50

Maximum buffer utilization detected 1sec 5sec 60sec 5min 1hr _____ _____ _____ ----------5376KB 5376KB 5376KB N/A Ethernet1/7 N/A Esses resultados indicam que 5,376 MB de 6 MB do buffer OB1 foram usados pelo tráfego unicast que deixou Eth1/7 nos últimos 60 segundos. Saída detalhada Nexus3500# show hardware profile buffer monitor interface Eth1/7 detail Detail CLI issued at: 09/30/2013 19:47:01 Legend -384KB - between 1 and 384KB of shared buffer consumed by port 768KB - between 385 and 768KB of shared buffer consumed by port 307us - estimated max time to drain the buffer at 10Gbps Active Buffer Monitoring for Ethernet1/7 is: Active **KBytes** 384 768 1152 1536 1920 2304 2688 3072 3456 3840 4224 4608 4992 5376 5760 us @ 10Gbps 307 614 921 1228 1535 1842 2149 2456 2763 3070 3377 3684 3991 4298 4605 ____ 09/30/2013 19:47:01 0 250 09/30/2013 19:47:00 0 252 Δ Δ 09/30/2013 19:46:59 0 253 09/30/2013 19:46:58 09/30/2013 19:46:57 09/30/2013 19:46:56 09/30/2013 19:46:55 09/30/2013 19:46:54 0 250 09/30/2013 19:46:53 09/30/2013 19:46:52 0 253 09/30/2013 19:46:51 0 249

As informações em cada linha são registradas em um segundo intervalo. Cada coluna representa o uso do buffer. Conforme mencionado nos resultados do comando, se houver um valor diferente de zero reportado para a coluna "384", significa que o uso do buffer estava entre 0 e 384 KBytes quando o ABM pesquisou o uso do OB. O número diferente de zero é o número de vezes que o uso foi relatado.Esses resultados indicam que o OB1 alcançou uma média de 5,376 MB de uso entre 249 e 253 vezes por segundo nos últimos 10 segundos para Eth1/7. Leva 4298 microssegundos (us) para limpar o buffer desse tráfego.Gerar um registro quando um limite é cruzadoSe o contador de queda e o uso do buffer incrementarem periodicamente, será possível definir um limite e gerar uma mensagem de log quando o limite for ultrapassado. logging level mtc-usd 5 hardware profile buffer monitor unicast sampling 10 threshold 4608

[•]

O comando é definido para monitorar o tráfego unicast em um intervalo de 10 nanossegundos e quando ele vai além de 75% do buffer, ele gera um log.Você também pode criar um agendador para coletar estatísticas ABM e saída do contador de interface a cada hora e anexá-lo aos arquivos bootflash. Este exemplo é para tráfego multicast: hardware profile buffer monitor multicast

```
feature scheduler
scheduler job name ABM
show hardware profile buffer monitor detail >> ABMDetail.txt
show clock >> ABMBrief.txt
show hardware profile buffer monitor brief >> ABMBrief.txt
show clock >> InterfaceCounters.txt
show interface counters errors >> InterfaceCounters.txt
scheduler schedule name ABM
time start now repeat 1:0
job name ABM
```

IDs de bug notáveis da Cisco

- ID de bug da Cisco <u>CSCum21350</u>: As oscilações de porta rápidas fazem com que todas as portas no mesmo buffer de QoS descartem todo o tráfego de transmissão/multicast de TX. Isso é corrigido na versão 6.0(2)A1(1d) e posterior.
- ID de bug da Cisco <u>CSCuq96923</u>: O bloco de buffer multicast está travado, o que resulta em quedas de multicast/broadcast de saída. Esta questão ainda está a ser investigada.
- ID de bug da Cisco <u>CSCva20344</u>: Bloco/travamento do buffer do Nexus 3500 sem transmissão ou multicast TX. Problema inreprodutível, potencialmente corrigido nas versões 6.0(2)U6(7), 6.0(2)A6(8) e 6.0(2)A8(3).
- ID de bug da Cisco <u>CSCvi93997</u>: bloco de buffer de saída dos switches Cisco Nexus 3500 travado. Isso é corrigido nas versões 7.0(3)I7(8) e 9.3(3).

Perguntas mais freqüentesO ABM afeta o desempenho ou a latência?Não, esse recurso não afeta a latência ou o desempenho do dispositivo.Qual é o impacto do menor intervalo de pesquisa de hardware ABM?Por padrão, o intervalo de sondagem de hardware é de 4 milissegundos. Você pode configurar esse valor como 10 nanossegundos. Não há impacto no desempenho ou na latência devido ao menor intervalo de pesquisa de hardware. A pesquisa de hardware padrão de 4 milissegundos é selecionada para garantir que você não sobrecarregue os contadores de histograma antes das pesquisas de software a cada segundo. Se você reduzir o intervalo de pesquisa de hardware em 255 amostras. O dispositivo não pode lidar com uma pesquisa de software inferior a um segundo, para corresponder à pesquisa de hardware mais baixa devido a restrições de CPU e memória. O whitepaper tem o exemplo do intervalo de pesquisa de hardware mais baixo e seu caso de

```
uso. Apêndice - Informações do recursoGerenciamento de buffer
```


- Buffer de pacote de 18 MB compartilhado por três blocos OB: ~4 MB reservados: Tamanho com base na MTU (Maximum Transmission Unit, Unidade máxima de transmissão) configurada (soma por porta de 2 x MTU Size x # de grupos de QoS habilitados)~14 MB compartilhados: Resto do buffer total~767 KB de OB: 0 para pacotes destinados à CPU
- 6 MB para cada OB é compartilhado por um conjunto de 16 portas (comando show hardware internal mtc-usd info port-mapping)

ProgramaçãoProgramação em três camadas:

- Unicast e multicast
- Classes de tráfego do mesmo esquema de programação
- Classes de tráfego no esquema

Neste diagrama:

- Congestionamento sustentado é introduzido em 1 G Eth1/40.
- Outros receptores multicast (Eth1/1 3) no bloco de buffer são afetados devido ao comportamento de agendamento multicast. Os receptores em outros blocos de buffer não são afetados.
- O "receptor lento multicast" pode ser aplicado a e1/40 para evitar perda de tráfego em portas não congestionadas.
- O "receptor lento multicast" esgota o multicast a uma taxa de 10 G em Eth1/40. Ainda é esperado que ocorram quedas na porta congestionada.
- Configurado com o comando multicast do perfil de hardware, low-receptor port <x>.

Monitoramento de buffer ativoConsulte o whitepaper <u>Cisco Nexus 3548 Ative Buffer</u> <u>Monitoring</u> para obter uma visão geral desse recurso.Implementação de hardware

- O ASIC tem 18 buckets e cada bucket corresponde a um intervalo de utilização de buffer (por exemplo, 0-384KB, 385-768KB e assim por diante).
- O ASIC pesquisa a utilização do buffer para todas as portas a cada 4 milissegundos (padrão). Esse intervalo de sondagem ASIC pode ser configurado em até 10 nanossegundos.

- Com base na utilização do buffer para cada intervalo de pesquisa de hardware, o contador de bucket para o intervalo correspondente é incrementado. Ou seja, se a porta 25 consumir 500 KB de buffer, o contador de bucket 2 (385-768 KB) é incrementado.
- Esse contador de utilização de buffer é mantido para cada interface no formato de histograma.
- Cada bucket é representado por 8 bits, de modo que o contador atinge o valor máximo em 255 e é redefinido quando o software lê os dados.

Implementação de software

- A cada segundo, o software pesquisa o ASIC para baixar e limpar todos os contadores de histograma.
- Esses contadores de histograma são mantidos na memória por 60 minutos com granularidade de um segundo.
- O software também garante que copie o histograma do buffer no flash de inicialização a cada hora, que pode ser copiado para o analisador para análise posterior.
- Efetivamente, isso mantém dois horas de dados de histograma de buffer para todas as portas, a última hora na memória e a segunda hora no flash de inicialização.