Exemplo de Configuração do GLBP em Catalyst 6500 Switches

Contents

Introduction **Prerequisites Requirements** Componentes Utilizados **Produtos Relacionados Conventions** Conceitos do GLBP Visão Geral do GLBP **Gateway Virtual Encaminhador Virtual** Limitação Sup 2 e Sup 720 - Comparação do GLBP Consideração de Design Configurar Diagrama de Rede Configurações Verificar Troubleshoot %GLBP-4-DUPADDR: Endereço duplicado **STATECHANGE** Não é possível efetuar ping no endereço GLBP Informações Relacionadas

Introduction

Este documento apresenta um exemplo de configuração do Gateway Load Balancing Protocol (GLBP) nos Cisco 6500 Catalyst Switches. Este documento mostra a configuração do GLPB em uma pequena rede de campus.

Prerequisites

Requirements

Certifique-se de atender a estes requisitos antes de tentar esta configuração:

<u>Configuração do GLBP</u>

- GLBP Protocolo de balanceamento de carga do gateway
- Opções de Balanceamento de Carga do Cisco GLBP

Componentes Utilizados

As informações neste documento são baseadas no Catalyst 6500 com Supervisor 720.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Produtos Relacionados

Esse comando foi introduzido no 12.2(14)S e foi integrado ao Cisco IOS® Software Release 12.2(15)T. Essa configuração também pode ser usada com estas versões de hardware:

- Cisco Catalyst 6500 Series Supervisor Engine 720
- Cisco Catalyst 6500 Series Supervisor Engine 2

Conventions

Consulte as <u>Convenções de Dicas Técnicas da Cisco para obter mais informações sobre convenções de documentos.</u>

Conceitos do GLBP

Visão Geral do GLBP

Para aprimorar a capacidade do Hot Standby Router Protocol (HSRP), a Cisco desenvolveu o GLBP. O GLBP fornece balanceamento de carga automático no primeiro salto, o que possibilita o uso mais eficiente dos recursos e a redução dos custos administrativos. Ele é uma extensão do HSRP e especifica um protocolo que atribui dinamicamente responsabilidade por um endereço IP virtual e distribui endereços MAC virtuais múltiplos para os membros de um grupo do GLBP.

Em redes de campus, as interfaces de VLAN da camada 3 atuam como o gateway para os hosts. Essas interfaces de VLAN da camada 3 de switches diferentes têm a carga balanceada por meio do GLBP. As interfaces da camada 3 de vários switches formam um grupo do GLBP. Cada grupo contém um endereço IP virtual exclusivo.

O Supervisor 720 pode ter um máximo de 1024 grupos do GLBP (números de grupo entre 0 e 1023). O Supervisor 2 aceita somente um grupo. Cada grupo do GLBP pode ter no máximo 4 membros. Isso significa que o GLBP pode balancear a carga de até 4 gateways.

Os membros do GLBP possuem duas funções:

- Gateway virtual Atribui endereços MAC virtuais aos membros.
- Encaminhador virtual Encaminha dados para o tráfego destinado ao endereço MAC virtual.

Gateway Virtual

Um membro em um grupo pode estar em um destes estados: ativo, em espera ou ouvindo. Os membros de um grupo do GLBP elegem um gateway para ser o Gateway Virtual Ativo (AVG) do grupo. Eles também elegem um membro como o Gateway Virtual de Standby (SVG). Se houver mais de dois membros, os membros restantes permanecerão no estado de escuta.

Se um AVG falha, o SVG assume a responsabilidade pelo endereço IP virtual. Um novo SVG é então eleito entre os gateways no estado de escuta. Se o AVG que falhou ou o novo membro com prioridade mais alta entrar online, ele não assumirá por padrão. Você pode configurar os switches para que o membro possa assumir.

A função do AVG é atribuir um endereço MAC virtual a cada membro do grupo do GLBP. Lembrese que no HSRP há apenas um endereço MAC virtual para o endereço IP virtual. No entanto, no GLBP cada membro recebe um endereço MAC virtual. O AVG cuida da atribuição de endereços MAC virtuais.

Observação: como o GLBP suporta um máximo de 4 membros para um grupo, o AVG pode atribuir apenas um máximo de 4 endereços MAC.

Encaminhador Virtual

O AVG atribui endereços MAC virtuais a cada membro em seqüência. O membro é chamado de Encaminhador virtual primário (PVF) ou Encaminhador virtual ativo (AVF) se o endereço MAC for atribuído diretamente pelo AVG. O mesmo membro será o Encaminhador Virtual Secundário (SVF) para os endereços MAC atribuídos aos demais membros. O PVF permanece em um estado ativo e o SVF em um estado de escuta.

Resumindo, para um grupo do GLBP com 4 membros, cada membro é um PVF para um endereço MAC e um SVF para os três outros endereços MAC.

Se o PVF para um endereço MAC virtual falhar, qualquer um dos SVFs assumirá a responsabilidade por aquele endereço MAC virtual. Nesse caso, esse membro será o PVF para 2 endereços MAC virtuais (um atribuído pelo AVG e o outro assumido devido ao membro que falhou). O esquema preemptivo do Encaminhador Virtual é habilitado por padrão. Lembre-se que o esquema preemptivo do Gateway Virtual não é habilitado por padrão, mas o do Encaminhador Virtual sim.

Para remover um AVF com cuidado, use o comando **redirect timers** nos outros AVFs para que quando o AVF atual for removido, o AVF secundário assuma o controle sem causar perda de pacotes no link.

Por padrão, o GLBP usa temporizadores internos para detectar a presença de um AVF baseado no qual continua fornecendo o MAC virtual alinhado ao AVF. Quando o AVF cai, o processo do GLBP espera por um período de tempo específico após o qual ele declara que o AVF não está mais disponível. Em seguida, ele começa a propagar o mesmo MAC virtual que o vincula a outros AVFs disponíveis. O padrão para esse temporizador é 300 segundos. Tal poderá ser reduzido para tirar melhor partido da situação e para se proceder a uma rápida transição.

Para configurar o tempo entre os pacotes de saudação enviados pelo gateway GLBP e o tempo em que o gateway virtual e as informações do encaminhador virtual são considerados válidos, use o comando **glbp** *group* timers [msec] *hellotime* [msec] holdtime no modo de configuração de interface.

Limitação

O Cisco Non-Stop Forwarding (NSF) com Stateful Switch Over (SSO) possui uma restrição com o GLBP. O SSO não reconhece o GLBP, o que significa que as informações de estado do GLBP não são mantidas entre o Supervisor Engine ativo e o de standby durante a operação normal. O GLBP e o SSO podem coexistir, mas ambos os recursos funcionam de modo independente. O tráfego dependente do GLBP pode alternar para o standby GLBP no caso de uma troca de supervisor.

Sup 2 e Sup 720 - Comparação do GLBP

O Supervisor 2 possui algumas restrições na implementação do GLBP. A seguir são resumidas as poucas diferenças no suporte ao GLBP entre o Supervisor 2 e o Supervisor 720.

- O Supervisor 2 oferece suporte somente à autenticação de texto plano.O Supervisor 720 oferece suporte às autenticações de texto plano e md5.
- O Supervisor 2 aceita somente um grupo. O número do grupo pode variar entre 0 e 1023. Sup2(config)#interface vlan 11 Sup2(config-if)#glbp 11 ip 172.18.11.1 More than 1 GLBP groups not supported on this platform.
 O Supervisor 720 aceita mais do um grupo (0 - 1023)

O Supervisor 720 aceita mais de um grupo (0 - 1023).

• HSRP e GLBP não podem coexistir no Supervisor 2. Isso significa que se você configurar o GLBP em uma VLAN, não poderá configurar o HSRP em nenhuma VLAN no switch.

Sup2(config-if)#standby 31 priority 120

multiple ip virtual protocols not supported in this platform.

HSRP e GLBP podem coexistir no Supervisor 720. Isso significa que você pode configurar algumas VLANs com GLBP e algumas outras VLANs com HSRP.

Consideração de Design

A implementação do GLBP em Catalyst Switches depende do design da rede. Você deve levar em consideração a topologia de spanning tree para usar o GLBP em sua rede. O diagrama a seguir pode ser usado como exemplo.

Diagrama 1

Neste diagrama, há duas VLANs, 10 e 20, em todos os três switches. Nesta rede, Distribution1 é a bridge raiz para todas as VLANs e o resultado é que a porta 1/0/2 em Distribution2 estará no estado de bloqueio. Neste cenário, a implementação do GLBP não é adequada. Como há apenas um caminho de Access1 para o switch de distribuição, não é possível conseguir o balanceamento real da carga com o GLBP. No entanto, neste cenário é possível usar o Spanning-Tree Protocol (STP) em vez do GLBP para balancear a carga e usar o HSRP como redundância. Você deve levar em consideração sua topologia de STP para decidir se o GLBP será usado ou não. Em configurações onde o spanning tree é necessário, a solução é usar um STP aprimorado, como o Rapid-PVST. Para habilitar o Rapid-PVST, use o comando <u>spanning-tree mode</u> *rapid-pvst* nos switches.

Este é o STP recomendado para usar com o GLBP. O Rapid-PVST fornece um tempo de convergência rápido, que permite que os links alcancem o estado de encaminhamento de spanning tree antes que o temporizador de espera do GLBP padrão exceda o tempo limite.

Se um STP é usado em um link para um roteador GLBP, o tempo de espera do GLBP deve ser maior que o tempo que o STP leva para alcançar o estado de encaminhamento. As configurações de parâmetro padrão conseguem isso com Rapid-PVST, enquanto um tempo de espera de mais de 30 segundos é necessário se o STP for usado com suas configurações padrão.

Configurar

Nesta seção, você encontrará informações para configurar os recursos descritos neste documento.

Nota: Use a Command Lookup Tool (somente clientes registrados) para obter mais informações sobre os comandos usados nesta seção.

Diagrama de Rede

Este documento utiliza a seguinte configuração de rede:

O diagrama mostrado aqui é um exemplo de rede de campus pequena. Distribution1 e Distribution 2 contêm as interfaces de VLAN da camada 3 e atuam como gateways para os hosts da camada de acesso.

Diagrama 2

Configurações

Este documento utiliza as seguintes configurações:

- <u>Distribution1</u>
- <u>Distribution2</u>

Há alguns pontos que devem ser considerados antes da configuração do GLBP:

- Ao configurar as interfaces com o GLBP, não configure glbp <group> ip <ip_address> primeiro. Configure os comandos opcionais do GLBP primeiro e, em seguida, configure o comando glbp <group> ip <ip_address>.
- O GLBP oferece suporte a quatro tipos de balanceamento de carga. O método padrão é round-robin. Consulte <u>Opções de Balanceamento de Carga do Cisco GLBP</u> para obter informações sobre as diferentes opções de balanceamento de carga.

Como prática recomendada ao configurar o GLBP para IPv4 e IPv6, use números de grupo diferentes do GLBP. Isso ajuda na solução de problemas e no gerenciamento.

Para configurar o GLBP de IPv6, consulte Exemplo de Configuração de IPv6 - GLBP.

Distribution1

```
Distribution1(config)#interface vlan 10
Distribution1(config-if)#ip address 172.18.10.2
255.255.255.0
Distribution1(config-if)#glbp 10 priority 110
Distribution1(config-if)#glbp 10 preempt
Distribution1(config-if)#glbp 10 authentication md5 key-
string s!a863
Distribution1(config-if)#glbp 10 ip 172.18.10.1
Distribution1(config-if)#exit
Distribution1(config)#interface vlan 20
Distribution1(config-if)#ip address 172.18.20.2
255.255.255.0
Distribution1(config-if)#glbp 20 priority 110
Distribution1(config-if)#glbp 20 preempt
Distribution1(config-if)#glbp 20 authentication md5 key-
string s!a863
Distribution1(config-if)#glbp 20 ip 172.18.20.1
Distribution1(config-if)#exit
Distribution1(config)#interface vlan 30
Distribution1(config-if)#ip address 172.18.30.2
255.255.255.0
Distribution1(config-if)#glbp 30 priority 110
Distribution1(config-if)#glbp 30 preempt
Distribution1(config-if)#glbp 30 authentication md5 key-
string s!a863
Distribution1(config-if)#glbp 30 ip 172.18.30.1
Distribution1(config-if)#exit
Distribution1(config)#interface vlan 40
Distribution1(config-if)#ip address 172.18.40.2
255.255.255.0
Distribution1(config-if)#glbp 40 priority 110
Distribution1(config-if)#glbp 40 preempt
Distribution1(config-if)#glbp 40 authentication md5 key-
string s!a863
Distribution1(config-if)#glbp 40 ip 172.18.40.1
Distribution1(config-if)#exit
Distribution1(config)#interface vlan 100
Distribution1(config-if)#ip address 172.18.100.2
255.255.255.0
Distribution1(config-if)#glbp 100 priority 110
```

Distribution1(config-if)#glbp 100 preempt Distribution1(config-if)#glbp 100 authentication md5 key-string s!a863 Distribution1(config-if)#glbp 100 ip 172.18.100.1 Distribution1(config-if)#exit Distribution1(config)#interface vlan 200 Distribution1(config-if)#ip address 172.18.200.2 255.255.255.0 Distribution1(config-if)#glbp 200 priority 110 Distribution1(config-if)#glbp 200 preempt Distribution1(config-if)#glbp 200 authentication md5 key-string s!a863 Distribution1(config-if)#glbp 200 ip 172.18.200.1 Distribution1(config-if)#exit Distribution2 Distribution2(config)#interface vlan 10 Distribution2(config-if)#ip address 172.18.10.3 255.255.255.0 Distribution2(config-if)#glbp 10 authentication md5 keystring s!a863 Distribution2(config-if)#glbp 10 ip 172.18.10.1 Distribution2(config-if)#exit Distribution2(config)#interface vlan 20 Distribution2(config-if)#ip address 172.18.20.3 255.255.255.0 Distribution2(config-if)#glbp 20 authentication md5 keystring s!a863 Distribution2(config-if)#glbp 20 ip 172.18.20.1 Distribution2(config-if)#exit Distribution2(config)#interface vlan 30 Distribution2(config-if)#ip address 172.18.30.3 255.255.255.0 Distribution2(config-if)#glbp 30 authentication md5 keystring s!a863 Distribution2(config-if)#glbp 30 ip 172.18.30.1 Distribution2(config-if)#exit Distribution2(config)#interface vlan 40 Distribution2(config-if)#ip address 172.18.40.3 255.255.255.0 Distribution2(config-if)#glbp 40 authentication md5 keystring s!a863 Distribution2(config-if)#glbp 40 ip 172.18.40.1 Distribution2(config-if)#exit Distribution2(config)#interface vlan 100 Distribution2(config-if)#ip address 172.18.100.3 255.255.255.0 Distribution2(config-if)#glbp 100 authentication md5 key-string s!a863 Distribution2(config-if)#glbp 100 ip 172.18.100.1 Distribution2(config-if)#exit Distribution2(config)#interface vlan 200 Distribution2(config-if)#ip address 172.18.200.3 255.255.255.0 Distribution2(config-if)#glbp 200 authentication md5 key-string s!a863

```
Distribution2(config-if)#glbp 200 ip 172.18.200.1
Distribution2(config-if)#exit
```

Verificar

Use esta seção para confirmar se a sua configuração funciona corretamente.

A <u>Output Interpreter Tool (somente clientes registrados) (OIT) oferece suporte a determinados</u> <u>comandos show.</u> Use a OIT para exibir uma análise da saída do comando show.

No exemplo de configuração, é possível observar que as interfaces de VLAN da camada 3 em Distribution1 estão configuradas com uma prioridade de GLBP mais alta, 110 (a prioridade padrão é 100). Assim, Distribution1 se torna o AVG para todos os grupos do GLBP (10, 20, 30, 40, 100 e 200).

Distribution1#show glbp

VLAN10 - Group 10

State is Active

!--- AVG for the group 10. 2 state changes, last state change 06:21:46 Virtual IP address is 172.18.10.1 Hello time 3 sec, hold time 10 sec Next hello sent in 0.420 secs Redirect time 600 sec, forwarder time-out 14400 sec Preemption enabled, min delay 0 sec Active is local Standby is 172.18.10.3, priority 100 (expires in 9.824 sec) Priority 110 (configured) Weighting 100 (default 100), thresholds: lower 1, upper 100 Load balancing: round-robin Group members: 000f.3493.9f61 (172.18.10.3) 0012.80eb.9a00 (172.18.10.2) local There are 2 forwarders (1

active) Forwarder 1 State is Active

!--- Primary Virtual Forwarder for the virtual MAC 0007.b400.0102. 1 state change, last state
change 1d01h MAC address is 0007.b400.0102 (default)

Owner ID is 0012.80eb.9a00 Redirection enabled Preemption enabled, min delay 30 sec Active is local, weighting 100

Forwarder 2 State is Listen

!--- Secondary Virtual Forwarder for the virtual MAC 0007.b400.0103. MAC address is 0007.b400.0103 (learnt) Owner ID is 000f.3493.9f61 Redirection enabled, 598.762 sec remaining (maximum 600 sec) Time to live: 14398.762 sec (maximum 14400 sec) Preemption enabled, min delay 30 sec Active is 172.18.10.3 (primary), weighting 100 (expires in 8.762 sec) !--- Output suppressed.

Distribution2#**show glbp**

```
VLAN10 - Group 10
```

State is Standby

!--- Standby Virtual Gateway for the group 10. 1 state change, last state change 02:01:19
Virtual IP address is 172.18.10.1 Hello time 3 sec, hold time 10 sec Next hello sent in 1.984
secs Redirect time 600 sec, forwarder time-out 14400 sec Preemption disabled Active is
172.18.10.2, priority 110 (expires in 9.780 sec) Standby is local Priority 100 (default)
Weighting 100 (default 100), thresholds: lower 1, upper 100 Load balancing: round-robin There
are 2 forwarders (1 active) Forwarder 1

State is Listen

!--- Secondary Virtual Forwarder for the virtual MAC 0007.b400.0102. MAC address is
0007.b400.0102 (learnt)
 Owner ID is 0012.80eb.9a00
 Time to live: 14397.280 sec (maximum 14400 sec)
 Preemption enabled, min delay 30 sec

Active is 172.18.10.2 (primary), weighting 100 (expires in 7.276 sec)

Forwarder 2

State is Active

!--- Primary Virtual Forwarder for the virtual MAC 0007.b400.0103. 1 state change, last state
change 02:02:57 MAC address is 0007.b400.0103 (default)
 Owner ID is 000f.3493.9f61
 Preemption enabled, min delay 30 sec
 Active is local, weighting 100

!--- Output suppressed.

Troubleshoot

Esta seção fornece informações que podem ser usadas para o troubleshooting da sua configuração.

%GLBP-4-DUPADDR: Endereço duplicado

A mensagem de erro indica um possível loop da camada 2 e problemas de configuração do STP.

Para resolver esse problema, execute o comando **show interface** para verificar o endereço MAC da interface. Se o endereço MAC da interface for o mesmo que o informado na mensagem de erro, isso indica que este roteador está recebendo seus próprios pacotes de hello. Verifique a topologia de spanning tree para identificar se há algum loop da camada 2. Se o endereço MAC da interface for diferente daquele informado na mensagem de erro, algum outro dispositivo com um endereço MAC gerou essa mensagem.

Observação: os membros do GLBP se comunicam entre si através de mensagens de saudação enviadas a cada 3 segundos para o endereço multicast 224.0.0.102 e a porta 3222 (origem e destino) do User Datagram Protocol (UDP). Ao configurar o comando **multicast border**, permita o endereço multicast por meio da permissão 224.0.00 15.255.255.255

STATECHANGE

A mensagem de erro é exibida devido a ter o EIGRP (Enhanced Interior Gateway Routing Protocol) e o GLBP configurados pelo usuário no mesmo link, o que pode resultar em alteração de estado no GLBP.

Como uma resolução, defina os temporizadores do GLBP de acordo com os temporizadores do EIGRP.

Não é possível efetuar ping no endereço GLBP

Os usuários não podem fazer ping no IP virtual ativo do GLBP; eles podem fazer ping na interface.

Siga estes passos para resolver esse problema:

- 1. Verifique se as entradas ARP no switch estão corretas ou não.
- 2. Verifique se as entradas CEF estão preenchidas corretamente. Em seguida, tente novamente com o comando **ping**.
- 3. Faça isso se o mesmo problema persistir:Desative a comutação rápida na interface afetada.

Informações Relacionadas

- <u>Configuração do GLBP</u>
- Opções de Balanceamento de Carga do Cisco GLBP
- Suporte ao Produto Switches
- Suporte de tecnologia de switching de LAN
- <u>Suporte Técnico e Documentação Cisco Systems</u>