Configurar um perfil de segurança de protocolo de Internet (IPSec) em um roteador RV34x Series

Objetivo

O IPSec (Internet Protocol Security) fornece túneis seguros entre dois pares, como dois roteadores. Os pacotes considerados sensíveis e que devem ser enviados através desses túneis seguros, bem como os parâmetros que devem ser usados para proteger esses pacotes sensíveis, devem ser definidos especificando as características desses túneis. Em seguida, quando o peer IPsec vê um pacote tão sensível, ele configura o túnel seguro apropriado e envia o pacote através desse túnel para o peer remoto.

Quando o IPsec é implementado em um firewall ou roteador, ele fornece uma segurança forte que pode ser aplicada a todo o tráfego que atravessa o perímetro. O tráfego em uma empresa ou grupo de trabalho não incorre na sobrecarga de processamento relacionado à segurança.

O objetivo deste documento é mostrar como configurar o perfil de IPSec em um roteador RV34x Series.

Dispositivos aplicáveis

Série RV34x

Versão de software

• 1.0.1.16

Configurar perfil de IPSec

Criar um perfil IPSec

Etapa 1. Faça login no utilitário baseado na Web do roteador e escolha **VPN > IPSec Profiles**.

VPN	
VPN	Setup Wizard
IPSec	c Profiles
Site-t	o-Site
Client	-to-Site
Telew	orker VPN Client
PPTP	9 Server
L2TP	Server
SSL	VPN
VPN	Passthrough

Etapa 2. A Tabela de perfis IPsec mostra os perfis existentes. Clique em Adicionar para criar um novo perfil.

IPs	sec Profiles Table		
	Name	Policy	In Use
0	Amazon_Web_Services	Auto	
0	Default	Auto	\checkmark
\bigcirc	Microsoft_Azure	Auto	
	Add Edit	Clone	Delete

Etapa 3. Crie um nome para o perfil no campo *Nome do perfil*. O nome do perfil deve conter apenas caracteres alfanuméricos e um sublinhado (_) para caracteres especiais.

Note: Neste exemplo, IPSec_VPN é usado como o nome do perfil IPSec.

Add a New IPSec Profile				
Profile Name:	IP	Sec_VPN	_	
Keying Mode	0	Auto	\bigcirc	Manual

Etapa 4. Clique em um botão de opção para determinar o método de troca de chaves que o perfil usará para autenticar. As opções são:

- Automático Os parâmetros de política são definidos automaticamente. Esta opção usa uma política de Internet Key Exchange (IKE) para troca de chaves de criptografia e integridade de dados. Se isso for selecionado, as configurações na área Parâmetros de política automática serão ativadas. Clique aqui para definir as configurações automáticas.
- Manual Esta opção permite que você configure manualmente as chaves para criptografia e integridade de dados para o túnel VPN (Virtual Private Network). Se isso for selecionado, as configurações na área Parâmetros de política manual serão ativadas. Clique <u>aqui</u> para definir as configurações manuais.

Note: Para este exemplo, Auto foi escolhido.

Add a New IPSec Profile	
Profile Name:	IPSec_VPN
Keying Mode	🧿 Auto 🛛 Manual

Configurar as configurações automáticas

Etapa 1. Na área Opções da Fase 1, escolha o grupo Diffie-Hellman (DH) apropriado a ser usado com a chave na Fase 1 na lista suspensa Grupo DH. Diffie-Hellman é um protocolo de troca de chave criptográfica que é usado na conexão para trocar conjuntos de chaves pré-compartilhadas. A força do algoritmo é determinada por bits. As opções são:

- Group2 1024 bits Calcula a chave mais lentamente, mas é mais seguro que Group1.
- Group5 1536 bits Calcula a chave com o menor tempo, mas é a mais segura.

Note: Neste exemplo, o bit Group2-1024 é escolhido.

Phase I Options	
DH Group:	✓ Group2 - 1024 bit
Encryption:	Group5 - 1536 bit

Etapa 2. Na lista suspensa Criptografia, escolha o método de criptografia apropriado para criptografar e descriptografar a carga útil de segurança de encapsulamento (ESP) e o protocolo ISAKMP (Internet Security Association and Key Management Protocol). As opções são:

- 3DES Triple Data Encryption Standard (Padrão triplo de criptografia de dados).
- AES-128 O Advanced Encryption Standard usa uma chave de 128 bits.
- AES-192 O Advanced Encryption Standard usa uma chave de 192 bits.
- AES-256 O Advanced Encryption Standard usa uma chave de 256 bits.

Observação: AES é o método padrão de criptografia sobre DES e 3DES por seu maior desempenho e segurança. O aumento da chave AES aumentará a segurança com um desempenho ininterrupto. Para este exemplo, AES-256 é escolhido.

Phase I Options	3DES	
DH Group:	AES-128	
	AES-192	P
Encryption:	✓ AES-256	ŧ
Authentication:	MD5	¢

Etapa 3. No menu suspenso Authentication (Autenticação), escolha um método de autenticação que determinará como o ESP e o ISAKMP são autenticados. As opções são:

- MD5 O algoritmo de resumo de mensagem tem um valor de hash de 128 bits.
- SHA-1 O algoritmo de hash seguro tem um valor de hash de 160 bits.
- SHA2-256 Algoritmo Hash Seguro com um valor hash de 256 bits.

Observação: MD5 e SHA são funções de hash criptográfico. Eles pegam um pedaço de dados, compactam-no e criam uma saída hexadecimal exclusiva que normalmente não é reproduzível. Neste exemplo, SHA2-256 é escolhido.

DH Group:	Group2 - 1024 bit 🖨
Encryption:	MD5 SHA1
Authentication:	✓ SHA2-256

Etapa 4. No campo *Vida útil do SA*, insira um valor entre 120 e 86400. Esse é o período de tempo durante o qual a Associação de Segurança (SA) do Internet Key Exchange (IKE) permanecerá ativa nesta fase. O valor padrão é 28800.

Note: Neste exemplo, 28801 é usado.

Authentication:	SF	IA2-256	\$
SA Lifetime:	288	301	
Perfect Forward Secrecy:		Enable	

Etapa 5. (Opcional) Marque a caixa de seleção **Habilitar segredo de encaminhamento perfeito** para gerar uma nova chave para a criptografia e autenticação de tráfego IPSec.

Authentication:	SHA2-256
SA Lifetime:	28801
Perfect Forward Secrecy:	Enable

Etapa 6. No menu suspenso Protocol Selection (Seleção de protocolo) na área Phase II Options (Opções de fase II), escolha um tipo de protocolo para aplicar à segunda fase da negociação. As opções são:

 ESP — Se isso for escolhido, vá para a <u>Etapa 7</u> para escolher um método de criptografia sobre como os pacotes ESP serão criptografados e descriptografados. Um protocolo de segurança que fornece serviços de privacidade de dados, autenticação de dados opcional e serviços antirreprodução. O ESP encapsula os dados a serem protegidos. AH — O AH (Authentication Header, cabeçalho de autenticação) é um protocolo de segurança que fornece autenticação de dados e serviços opcionais de anti-repetição. O AH está incorporado aos dados a serem protegidos (um datagrama IP completo). Vá para a <u>Etapa 8</u> se esta opção for escolhida.

Phase II Options		
Protocol Selection:	✓ ESP	÷
Encryption:	AH	\$

Passo 7. Se o ESP tiver sido escolhido na Etapa 6, escolha o método de criptografia apropriado para criptografar e descriptografar o ESP e o ISAKMP na lista suspensa Criptografia. As opções são:

- 3DES Triple Data Encryption Standard (Padrão triplo de criptografia de dados).
- AES-128 O Advanced Encryption Standard usa uma chave de 128 bits.
- AES-192 O Advanced Encryption Standard usa uma chave de 192 bits.
- AES-256 O Advanced Encryption Standard usa uma chave de 256 bits.

Note: Neste exemplo, AES-256 é escolhido.

Phase II Options	3DES	
Protocol Selection:	AES-128	
	AES-192	P
Encryption:	✓ AES-256	÷

<u>Etapa 8.</u> No menu suspenso Authentication (Autenticação), escolha um método de autenticação que determinará como o ESP e o ISAKMP são autenticados. As opções são:

- MD5 O algoritmo de resumo de mensagem tem um valor de hash de 128 bits.
- SHA-1 O algoritmo de hash seguro tem um valor de hash de 160 bits.
- SHA2-256 Algoritmo Hash Seguro com um valor hash de 256 bits.

Note: Neste exemplo, SHA2-256 é usado.

Protocol Selection:	ESP	\$
Encryption:	MD5	Ð
Authentication:	SHAT ✓ SHA2-256	÷

Etapa 9. No campo *Vida útil do SA*, insira um valor entre 120 e 28800. Este é o período de tempo durante o qual o SA do IKE permanecerá ativo nesta fase. O valor padrão é 3600.

Note: Neste exemplo, 28799 é usado.

SA Lifetime:

Etapa 10. Na lista suspensa Grupo DH, escolha o grupo Diffie-Hellman (DH) apropriado a ser usado com a chave na Fase 2. As opções são:

- Group2 1024 bits Calcula a chave mais lentamente, mas é mais seguro que Group1.
- Group5 1536 bit Calcula a chave com o menor tempo, mas é a mais segura.

Note: Neste exemplo, Grupo5 - 1536 bits é escolhido.

SA Lifetime:	29700 090		
	Group2 - 1024 bit		
DH Group:	✓ Group5 - 1536 bit		
Etapa 11. Clique em			

Note: Você será levado de volta para a Tabela de perfis de IPSec e o perfil de IPSec recémcriado deverá aparecer agora.

IPS	IPSec Profiles			
V	Success. To permanently save the configuration. Go to Configuration Management page or click Save icon.			
	•			
1	Psec Profiles Table			
	Name	Policy	In Use	
	Amazon_Web_Services	Auto	×	
	Default	Auto		
1	Microsoft_Azure	Auto		
	IPSec_Vpn	Auto		
	Add Edit	Clon	ne Delete	
	Apply Cancel			

Etapa 12. (Opcional) Para salvar a configuração permanentemente, vá para a página

Copiar/Salvar configuração ou clique no

no ícone na parte superior da página.

Agora você deve ter configurado com êxito um perfil de IPSec automático em um roteador RV34x Series.

Defina as configurações manuais

Etapa 1. No campo *SPI-Entrada*, insira um número hexadecimal que varia de 100 a FFFFF para a tag Security Parameter Index (SPI) para o tráfego de entrada na conexão VPN. A marca SPI é usada para distinguir o tráfego de uma sessão do tráfego de outras sessões.

Note: Para este exemplo, 0xABCD é usado.

Manual Policy Parameters	
SPI-Incoming:	0xABCD
SPI-Outgoing:	0x1234

Etapa 2. No campo *SPI-Saída*, insira um número hexadecimal que varia de 100 a FFFFF para a marca SPI para tráfego de saída na conexão VPN.

Note: Para este exemplo, é usado 0x1234.

SPI-Incoming:	0xABCD
SPI-Outgoing:	0x1234

Etapa 3. Escolha uma opção na lista suspensa Criptografia. As opções são 3DES, AES-128, AES-192 e AES-256.

Note: Neste exemplo, AES-256 é escolhido.

SPI Incoming:	3DES
SPI Outgoing:	AES-128
	AES-192
Encryption:	✓ AES-256

Etapa 4. No campo *Key-In*, insira uma chave para a política de entrada. O comprimento da chave depende do algoritmo escolhido na <u>Etapa 3</u>.

- 3DES usa uma chave de 48 caracteres.
- O AES-128 usa uma chave de 32 caracteres.
- O AES-192 usa uma chave de 48 caracteres.
- O AES-256 usa uma chave de 64 caracteres.

Note: Neste exemplo, 123456789123456789123... é usado.

Key-In:	123456789123456789123
Key-Out:	1a1a1a1a1a1a1a1212121

Etapa 5. No campo *Key-Out*, insira uma chave para a política de saída. O comprimento da chave depende do algoritmo escolhido na Etapa 3.

Note: Neste exemplo, 1a1a1a1a1a1a1a1a121212... é usado.

Key-In:	123456789123456789123
Key-Out:	1a1a1a1a1a1a1a1212121

Etapa 6. Escolha uma opção na lista suspensa Algoritmo de integridade manual.

- MD5 Usa um valor de hash de 128 bits para a integridade dos dados. MD5 é menos seguro, mas mais rápido que SHA-1 e SHA2-256.
- SHA-1 Usa um valor de hash de 160 bits para a integridade dos dados. O SHA-1 é mais lento, mas mais seguro que o MD5, e o SHA-1 é mais rápido, mas menos seguro que o SHA2-256.
- SHA2-256 Usa um valor de hash de 256 bits para a integridade dos dados. SHA2-256 é mais lento, mas seguro que MD5 e SHA-1.

Note: Neste exemplo, MD5 é escolhido.

Authentication:	✓ MD5	
Key-In	SHA1 SHA2-256	
Key-Out		

Passo 7. No *campo Key-In*, insira uma chave para a política de entrada. O comprimento da chave depende do algoritmo escolhido na <u>Etapa 6</u>.

- MD5 usa uma chave de 32 caracteres.
- SHA-1 usa uma chave de 40 caracteres.
- SHA2-256 usa uma chave de 64 caracteres.

Note: Neste exemplo, 123456789123456789123... é usado.

Key-In:	123456789123456789123
Key-Out:	1a1a1a1a1a1a1a1212121

Etapa 8. No *campo Key-Out*, insira uma chave para a política de saída. O comprimento da chave depende do algoritmo escolhido na <u>Etapa 6</u>.

Note: Neste exemplo, 1a1a1a1a1a1a1a1a121212... é usado.

Key-In:		123456789123456789123
Key-Out:		1a1a1a1a1a1a1a121212
Etapa 9. Clique em	Apply	

Note: Você será levado de volta para a Tabela de perfis de IPSec e o perfil de IPSec recémcriado deverá aparecer agora.

IPS	ec Profiles			
~	Success. To permanent	ly save the con	figuration. Go to Configuration Management page or click Save icon	
IP	sec Profiles Table			
	Name	Policy	In Use	
0	Amazon_Web_Services	Auto		
0	Default	Auto	I	
0	Microsoft_Azure	Auto		
0	IPSec_Vpn	Manual		
	Add Edit Clone Delete			
A	Apply Cancel]		

Etapa 10. (Opcional) Para salvar a configuração permanentemente, vá para a página

Copiar/Salvar configuração ou clique no interventional forma de carrera de ca

Agora você deve ter configurado com êxito um perfil de IPSec manual em um roteador RV34x Series.