Implementando o backup de WAN LTE com roteadores Cisco RV34x Series usando um Mac OSX

Objetivo

Este artigo explica como usar um roteador Cisco Business RV em conjunto com um roteador de terceiros que tenha o recurso integrado LTE (Long Term Evolution) Wide Area Network (WAN) usando um computador Mac. O roteador LTE é usado como conectividade de backup com a Internet para o roteador RV34x Series. Neste cenário, o <u>roteador NETGEAR Nighthawk LTE Mobile Hotspot, modelo MR1100</u> será usado.

Se você usa um computador Windows, deve seguir as etapas de <u>Implementação de</u> <u>Backup de WAN LTE com Cisco RV34x Series Routers Usando um PC Windows</u>.

Table Of Contents

- 1. Recursos da NETGEAR
- 2. Topologia de backup da Internet
- 3. Visão geral da configuração
- 4. Configuração inicial no roteador móvel LTE
- 5. Configurar a passagem IP no roteador móvel LTE
- 6. Configurar o roteador RV34x para backup da Internet na WAN 2
- 7. Verifique o acesso à Internet no roteador Cisco RV34x
- 8. Verifique a Internet de backup da WAN 2

Dispositivos aplicáveis | Versão do firmware

- RV340 | Firmware 1.0.03.16
- RV340W | Firmware 1.0.03.16
- RV345 | Firmware 1.0.03.16
- RV345P | Firmware 1.0.03.16

Introduction

Éessencial que uma empresa tenha uma Internet consistente. Você deseja fazer tudo o que puder para garantir a conectividade na sua rede, mas não tem controle sobre a confiabilidade do seu ISP (Provedor de serviços de Internet). Em algum momento o serviço deles pode ficar inoperante, o que significa que sua rede também estaria. É por isso que é importante planejar com antecedência. O que você pode fazer?

Ésimples, com os roteadores Cisco Business série RV34x há duas opções disponíveis para configurar uma Internet de backup:

- Você pode adicionar um segundo ISP tradicional usando um dongle compatível com 3G/4G LTE Universal Serial Bus (USB) com uma assinatura. O desafio dessa configuração é que quando um terceiro faz uma atualização do software do dongle, ele pode, às vezes, causar problemas de compatibilidade. Se quiser ver a compatibilidade de dongle USB ISP mais atualizada com os Cisco RV Series Routers, clique <u>aqui</u>.
- 2. Utilize a 2^a porta WAN e adicione um segundo roteador ISP com capacidade LTE integrada. O foco deste artigo está nessa opção, portanto, se isso interessa a você, continue! Neste cenário, nos concentraremos em adicionar um roteador ISP com capacidade LTE, especificamente, o roteador NETGEAR Nighthawk LTE Mobile Hotspot, modelo MR1100. O roteador usa dados móveis, assim como um telefone celular, quando é usado para acessar a Internet, portanto, certifique-se de ter o plano apropriado para suportar seu ambiente.

O LTE de quarta geração (4G) é uma melhoria em relação ao 3G. Ele fornece uma conexão mais confiável, velocidades de upload e download mais rápidas e melhor clareza de voz e vídeo. Embora o 4G LTE não seja uma conexão 4G completa, ele é considerado muito superior ao 3G.

Além disso, o ISP secundário pode ser configurado para balancear carga e expandir a largura de banda na sua rede. Se quiser assistir a um vídeo sobre isso, confira o <u>Cisco</u> <u>Tech Talk: Configurando WAN dupla para balanceamento de carga em roteadores</u> <u>RV340 Series</u>.

A Cisco Business não vende nem oferece suporte a produtos NETGEAR. Ele foi

simplesmente usado como um roteador LTE compatível com os roteadores da série Cisco RV.

Recursos da NETGEAR

- 1. Página do produto
- 2. Guia de início rápido
- 3. Manual do usuário
- 4. Quais bandas de celular são suportadas pelo roteador móvel MR1100 Nighthawk M1?
- 5. Lista de transportadoras suportadas pelo hotspot AirCard
- 6. Adquira o roteador móvel MR1100 Nighthawk M1 (verifique a disponibilidade do ISP)

Topologia de backup da Internet

A imagem abaixo ilustra o ISP primário conectado à WAN1 no RV Series Router (representado como uma caixa azul) e a WAN 2 conectada à porta mostrada no roteador NETGEAR (o equipamento preto) para o ISP secundário.

Antes de conectar o roteador LTE ao roteador RV340, siga as instruções abaixo para configurar o roteador LTE como uma Internet de backup.

Visão geral da configuração

Aqui estão as etapas de alto nível necessárias para habilitar a Internet de backup.

1. Configuração inicial no roteador móvel LTE

- 2. Configurar a passagem IP no roteador móvel LTE
- 3. Configurar o roteador RV34x para backup da Internet na WAN 2

Configuração inicial no roteador móvel LTE

Use uma estação de trabalho para se conectar ao roteador Nighthawk LTE e siga as instruções para configurar a administração padrão e redes de hotspot. As etapas podem ser encontradas no Manual do usuário do NETGEAR. Isso define o roteador LTE como um hotspot Wi-Fi.

A configuração inicial para o roteador móvel LTE permite uma conexão Ethernet limitada. Usando a mesma estação de trabalho, conecte-se à porta Ethernet e verifique se um endereço IP válido é emitido a partir do roteador móvel LTE. Verifique isso abrindo o navegador para verificar um site válido na Internet.

O hotspot será desativado automaticamente na próxima seção. Isso permitirá o acesso ao endereço IP público externo necessário para nossas necessidades.

Configurar a passagem IP no roteador móvel LTE

Após seguir as etapas da seção acima, você pode acessar o painel para configurar o roteador móvel LTE como um dispositivo autônomo para acesso direto à Internet pública.

Preencha as opções de configuração de Passagem IP para fornecer um endereço IP direto para o público.

Passo 1

Em um navegador da Web, digite attwifimanager/index.html.

🛈 🔏 attwifimanager/index.html

Você deve ver uma tela de painel semelhante à mostrada abaixo.

Clique em Configurações para acessar os parâmetros de configuração avançada.

Etapa 3

Navegue até Mobile Router Setup (Configuração do roteador móvel).

Em *IP PASSTHROUGH*, selecione **ON Disable Wi-Fi (Ativar desativação do Wi-Fi) no roteador móvel**. Isso desabilitará o suporte para hotspot Wi-Fi.

Etapa 5

Em TETHERING, selecione Charge only no menu suspenso.

TETHERING	
Turn off Wi-Fi when tethering	
Use USB port for	
Charge only)

Etapa 6

Clique em Apply.

Uma janela pop-up será aberta para Confirmar reinicialização e clique em Continuar.

Passo 8

Um aviso será exibido no canto superior direito, Banda larga móvel desconectada.

Mobile Broadband Disconnected

Your data connection is disconnected.

Passo 9

Um aviso será exibido, PROCURANDO ROTEADOR MÓVEL.

A interface Wi-Fi precisa ser desabilitada para testar a configuração do roteador LTE na rede LAN. Para desativar a ligação Wi-Fi, clique no **ícone Wi-Fi** e selecione **Desligar Wi-Fi**.

Em seguida, você verá que a rede não está conectada ao RV340.

• • < >	Network	Q Search
Lo	cation: Automatic	0
USB 10/00 LAN Not Connected Bluetooth PAN Not Connected	Status:	Not Connected The cable for USB 10/100/1000 LAN is connected, but your computer does not have an IP address.
BelkinB-C LAN Not Connected	Configure IPv4:	Using DHCP
MR1100 Not Connected	IP Address:	
• Wi-Fi	Subnet Mask: Router:	
ThundeIt Bridge Not Connected	DNS Server: Search Domains:	
+ - *-		Advanced ?

Etapa 12

Na Etapa 7, você fez com que o roteador NETGEAR realizasse uma reinicialização. Quando isso estiver concluído, pegue um cabo Ethernet e conecte o roteador LTE diretamente ao seu PC.

Passo 13

Observe o endereço IP do ISP para Internet de sua LAN Ethernet. Esse é o endereço IP do roteador LTE.

Verifique a conectividade com a Internet abrindo o navegador e digitando um site válido na Internet.

Etapa 15

Desconecte o cabo Ethernet do roteador LTE e do PC.

Configurar o roteador RV34x para backup da Internet na WAN 2

Agora que o roteador LTE foi configurado e a estação de trabalho está recebendo um endereço IP gerado por ISP, conecte o roteador móvel LTE diretamente à porta WAN 2 do roteador da série RV340, como mostrado na seção <u>Backup da Topologia da</u> <u>Internet</u> deste artigo. Esse endereço foi fornecido ao roteador Cisco diretamente pelo roteador LTE (do ISP).

Atualmente, a conexão com a Internet é fornecida pela WAN 1 do RV340.

Passo 1

Conecte o roteador LTE à porta WAN 2 do roteador RV340.

Passo 2

Conecte seu PC ao roteador RV para acessar os menus de administração.

Etapa 3

Navegue até **Status e Statistics > ARP Table**. Anote o endereço IPv4 de seu PC na LAN. Esse endereço IP será necessário para a etapa 5.

Selecione **System Summary (Resumo do sistema)** e veja a WAN 1 e a WAN 2 são mostradas como *ativas*.

⊗ 	Getting Started Status and Statistics	System S	Summary	1						
1	System Summary TCP/IP Services Port Traffic WAN QoS Statistics ARP Table Routing Table	System Inform Host Name: Serial Number: System Up Time Current Time: CPU/Memory U PID VID:	ation router4 PSZ20 e: 0 Days 2020- Isage: 6% / 3- RV345	145788 231BKX 3 Hours 11 Mi Jan-23, 01:13: 4% P-K9 PP	nutes 36 Sect 21 GMT	onds		Firmware Info Firmware Vers Firmware MD5 WAN1 MAC A WAN2 MAC Ado	ormation 1 ion: 1 5 Checksum: 1 ddress: e ddress: e tress: e	.0.03.16 b5370409d0f404504 c:bd:1d:44:57:86 c:bd:1d:44:57:87 c:bd:1d:44:57:88
	DHCP Bindings Mobile Network View Logs	Port Status Port ID	1	2	3	4	5	6	7	8
*	Administration	Interface	LAN	LAN	LAN	LAN	LAN	LAN	LAN	LAN
٠	System Configuration	Link Status	1	T.	1	Į.	1	Ļ	4	4
•	WAN LAN	Speed		1000Mbps				2		,
8	Routing	Port ID	11	12	13	14	15	16/DMZ	Internet	Internet
	Firewall	Interface	LAN	LAN	LAN	LAN	LAN	LAN	WAN1	WAN2
₽	VPN	Link Status	Ļ	1	1	1	1	1	T	T
	Security	Speed							1000Mbps	1000Mbps

Etapa 5

Role a página para baixo e anote os endereços IP de cada WAN.

Etapa 6

No computador Mac, selecione o seguinte:

1. Pasta Aplicativos

3. Pasta Utilitários

4.

5. Terminal

Etapa 7

Digite o comando para fazer ping no gateway local da LAN do roteador.

t C: igvee Usersigvee ping [endereço IP do gateway local do roteador]

Nesse cenário, o endereço IP é 172.168.1.1.

C:\Users\ ping 172.168.1.1

	•	••			0	Download	is —	R2	ash — 80×25	
l		-MBT	Ludown	loads		\$ ping	173	2.168.1.	.1	
	PIN	C 172.	168.1	.1 172	.168.3	1.1): 56	dat	ta byte:	8	
h	0.9	Dytes	IFOR	112.168	.1.1:	icmp_see	0-5	tt1=64	time=0.800	88
	64	bytes	from	172.168	1.1.1.	icmp_see	g=1	tt1=64	time=0.659	2.0
	64	bytes	from	172.168	1.1.1:	icmp_see	1=2	tt1=64	time=0.623	75
	64	bytes	from	172.168	.1.1:	icmp_see	1-3	tt1=64	time=0.592	7.8
Ľ	°C									
		172.1	68.1.	1 ping	stati	stics				
	4 p	ackets	tran	anitted	l, 4 pi	ackets re	seei	ived, 0.	.0% packet	loss
	rou	ind-tri	ip min	/avg/ma	x/std	dev = 0.3	592,	/0.668/0	0.800/0.080	ms
		•								

Digite o comando para fazer ping no gateway da WAN 2. Em um computador Mac, o ping continua até que você atinja o **controle + C**.

$\texttt{C:} \setminus \texttt{Users} \setminus$ ping [endereço IP do gateway da WAN 2]

Nesse cenário, o endereço IP é 10.226.255.1.

C:\Users\ ping 10.226.255.1

	Downloads - R2 - ping 192.168.100.1 - 80×25
	\$ \$ ping 10.226.255.1
PING 10.226.255.1 (10.	.226.255.1). So Gata Dytes
64 bytes from 10.226.2	255.1: icmp_seg=0 ttl=63 time=1.745 ms
64 bytes from 10.226.2	255.1: icmp_seq=1 ttl=63 time=2.802 ms
64 bytes from 10.226.2	255.1: icmp_seq=2 ttl=63 time=0.926 ms
64 bytes from 10.226.2	255.1: icmp_seq=3 ttl=63 time=1.248 ms
^c	

Passo 9

Digite o comando para fazer ping no gateway da WAN 1. Deixe o ping continuar pelo processo de verificação.

C: ackslash Users ackslash ping [endereço IP do gateway da WAN 1]

Nesse cenário, o endereço IP é 192.168.100.1.

C:\USETS\ ping 192.168.100.1

-	1		1 and a		pin	g 192.1	168.100.	1	
PI	NG 192.	.168.1	100.1 (192.16	8.100.1): 56 0	iata byt	es	
-		-		8.100.3	1: icmp	_seq=0	tt1=63	time=2.334	ms
64	bytes	from	192.16	8.100.3	1: icmp	seq=1	tt1=63	time=1.716	ms -
64	bytes	from	192.16	8.100.3	1: ionp	seq=2	tt1=63	time=1.638	ms
64	bytes	from	192.16	8.100.3	1: icmp	seq=3	tt1=63	time=1.623	2.5
64	bytes	from	192.16	8.100.3	1: icmp	seq=4	tt1=63	time=1.806	2.5
64	bytes	from	192.16	8.100.3	1: icmp	seq=5	tt1=63	time=1.735	ms
64	bytes	from	192.16	8.100.3	1: icmp	seq=6	tt1=63	time=1.617	26
64	bytes	from	192.16	8.100.3	1: icmp	seq=7	tt1=63	time=1.960	2.5
64	bytes	from	192.16	8.100.3	1: icmp	seq=8	tt1=63	time=1.734	7.8
64	bytes	from	192.16	8.100.3	1: icmp	seq=9	tt1=63	time=1.730	ms

Passo 10

Navegue até **WAN > Multi-WAN**. Verifique se a WAN 1 tem precedência de 1 e se a WAN 2 tem precedência de 2.

Isso configurará a WAN 2 como o ISP de backup em caso de falha na WAN 1.

		E*	cisco R	V345P-router445788		cisco (admin)	English 🔹 ?	1 🕩
®	Getting Started	Mul	ti-WAN				Apply	Canaal
٩	Status and Statistics	indi					4 Арруу	Garicei
*	Administration	Inte	erface Setting	Table				^
٠	System Configuration							
	and the factor							
	WAN		3		 Weighted by Percentage (For Load-Balance)(%) 	O Weighted by Bandwid	ith (For Load-Balanc	e)
	WAN WAN Settings	0	Interface \$	Precedence (For Failover) \$	 Weighted by Percentage (For Load-Balance)(%) (Mbps) 	 Weighted by Bandwid 	ith (For Load-Balanc	e)
1	WAN WAN Settings Multi-WAN	0	Interface ¢	Precedence (For Failover) \$	Weighted by Percentage (For Load-Balance)(%) (Mbps)	 Weighted by Bandwid 100 	lth (For Load-Balanc	e)
2	WAN WAN Settings Multi-WAN Mobile Network		WAN1 WAN2	Precedence (For Failover) ¢	Weighted by Percentage (For Load-Balance)(%) (Mbps)	Weighted by Bandwid 100	th (For Load-Balanc	e)
1	WAN WAN Settings Multi-WAN Mobile Network Dynamic DNS		Interface WAN1 WAN2 USB1	Precedence (For Failover) ¢	Weighted by Percentage (For Load-Balance)(%) (Mbps)	Weighted by Bandwid 100	Ith (For Load-Balanc	e)

Clique no ícone Salvar.

Verifique o acesso à Internet no roteador Cisco RV34x

Passo 1

Navegue até **Status e Estatística > Resumo do sistema**. Verifique se o Status da Multi-WAN está on-line.

⊗	Getting Started	System Sum	marv					
1	Status and Statistics	System cummury						
2	System Summary							
	TCP/IP Services	IPv4 IPv6						
	Port Traffic	Interface	WAN1	WAN2	USB1	USB2		
	WAN QoS Statistics	IP Address	192.168.100.147	10.226.255.225				
	ARP Table	Default Gateway	192.168.100.1	10.226.255.1				
	Routing Table	DNS	192.168.100.1	172.26.38.1				
	(3 Dynamic DNS	Disabled	Disabled	Disabled	Disabled		
	DHCP Bindings	Multi-WAN Status	Online	Online	Offline	Offline		
	Mobile Network		Release	Release	(Not Attached)	(Not Attached)		
	View Logs		Renew	Renew				

Verifique abrindo o navegador para verificar um site da Internet válido.

Verifique a Internet de backup da WAN 2

Passo 1

Verifique se o ping ainda está em execução.

۲	•		Downlo	ads — R2 — pin	g 192.168	3.100.1 — 80×2	5
64	bytes	from	192.168.100.1:	icmp_seq=73	tt1=63	time=1.921	8.8
64	bytes	from	192.168.100.1:	icmp_seq=74	ttl=63	time=2.069	25
64	bytes	from	192.168.100.1:	icmp_seq=75	tt1=63	time=1.600	ns
64	bytes	from	192.168.100.1:	icmp_seq=76	tt1=63	time=2.329	ma
64	bytes	from	192.168.100.1:	icmp_seq=77	tt1=63	time=1.653	8.0
64	bytes	from	192.168.100.1:	icmp_seq=78	tt1=63	time=2.076	ms.
64	bytes	from	192.168.100.1:	icnp_seq=79	tt1=63	time=1.794	ns.
64	bytes	from	192.168.100.1:	icmp_seq=80	tt1=63	time=1.583	28
64	bytes	from	192.168.100.1:	icmp_seq=81	tt1=63	time=1.782	ns
64	bytes	from	192.168.100.1:	icmp_seq=82	tt1=63	time=1.567	ms.
64	bytes	from	192.168.100.1:	icmp_seq=83	tt1=63	time=1.734	0.8
64	bytes	from	192.168.100.1:	icmp_seq=84	ttl=63	time=2.429	25
64	bytes	from	192.168.100.1:	icmp_seq=85	tt1=63	time=3.014	8
64	bytes	from	192.168.100.1:	icnp_seq=86	tt1=63	time=2.362	ns
64	bytes	from	192.168.100.1:	icmp_seq=87	tt1=63	time=1.803	85
64	bytes	from	192.168.100.1:	icmp_seq=88	tt1=63	time=1.832	8.8
64	bytes	from	192.168.100.1:	icnp_seq=89	tt1=63	time=1.884	85
64	bytes	from	192.168.100.1:	icmp_seq=90	tt1=63	time=1.885	21.0
64	bytes	from	192.168.100.1:	icmp_seq=91	ttl=63	time=1.918	ns
64	bytes	from	192.168.100.1:	icmp_seq=92	tt1=63	time=1.802	Πß
64	bytes	from	192.168.100.1:	icmp_seq=93	tt1=63	time=1.828	8.8
64	bytes	from	192.168.100.1:	icmp_seq=94	ttl=63	time=2.194	25
64	bytes	from	192.168.100.1:	icmp_seq=95	tt1=63	time=2.010	8.8
64	bytes	from	192.168.100.1:	icmp_seq=96	tt1=63	time=1.853	B.S

Passo 2

Puxe o cabo para a WAN 1. Você verá que os pings começam a falhar. Clique em **control + c** para que os pings parem.

	• •		Downlo	ads - R2 - ping 192.168.100.1 - 80×25
64	bytes	from	192.168.100.1:	icmp_seq=90 ttl=63 time=1.885 ms
64	bytes	from	192.168.100.1:	icmp_seq=91 ttl=63 time=1.918 ms
64	bytes	from	192.168.100.1:	icmp_seq=92 ttl=63 time=1.802 ms
64	bytes	from	192.168.100.1:	icmp_seq=93 ttl=63 time=1.828 ms
64	bytes	from	192.168.100.1:	icmp_seq=94 ttl=63 time=2.194 ms
64	bytes	from	192.168.100.1:	icmp_seq=95 ttl=63 time=2.010 ms
64	bytes	from	192.168.100.1:	<pre>icmp_seq=96 ttl=63 time=1.853 ms</pre>
64	bytes	from	192.168.100.1:	icmp_seq=97 ttl=63 time=1.609 ms
64	bytes	from	192.168.100.1:	icmp_seq=98 ttl=63 time=1.761 ms
64	bytes	from	192.168.100.11	icmp_seq=99 ttl=63 time=3.376 ms
64	bytes	from	192.168.100.1:	icmp_seq=100 ttl=63 time=1.804 ms
64	bytes	from	192.168.100.1:	icmp_seq=101 ttl=63 time=1.416 ms
64	bytes	from	192.168.100.1:	icmp_seq=102 ttl=63 time=1.615 ns
64	bytes	from	192.168.100.1:	icmp_seq=103 ttl=63 time=3.400 ms
64	bytes	from	192.168.100.11	icmp_seq=104 ttl=63 time=1.855 ms
64	bytes	from	192.168.100.1:	icmp_seq=105 ttl=63 time=2.057 ms
64	bytes	from	192.168.100.1:	<pre>icnp_seq=106 ttl=63 time=2.233 ns</pre>
64	bytes	from	192.168.100.1:	icnp_seq=107 ttl=63 time=1.739 ns
64	bytes	from	192.168.100.1:	icmp_seq=108 ttl=63 time=2.482 ms
Re	quest (timeou	at for icmp_seq	109
Re	quest (timeou	at for icmp_seq	110
Re	quest (timeou	at for icmp_seq	111
Re	quest t	timeou	at for icmp_seq	112
Re	quest 1	timeou	at for icmp_seq	113

Etapa 3

Navegue até Status e Estatística > Resumo do sistema. Observe que a WAN 1 está off-line.

Faça ping no endereço IP da WAN 2. As respostas indicam que você tem conectividade com a WAN de backup LTE (roteador LTE).

$C: Users \setminus ping [endereço IP da WAN 2]$

Nesse cenário, o endereço IP é 10.226.255.1.

Abra um navegador da Web e verifique um site da Internet válido. Isso também verifica se você tem a funcionalidade de WAN de backup adequada na WAN (roteador LTE).

← → ♂ ŵ		A https://www	w.apple.com	
	Ś	Mac	iPad	iPhone
Conclusão				

Excelente trabalho, agora você configurou sua rede com conectividade de backup. Sua rede agora é mais confiável, o que funciona bem para todos!