Configuração de Switching L2 para Processo de Conversão de Configuração de L2VPN XR

Contents

Introduction

Prerequisites

Requirements

Componentes Utilizados

Informações de Apoio

Problema

Solução

Converter uma configuração

Configuração do IOS

Configuração do ASR 9000 para Interfate TenGigabitEthernet 13/3 (porta tronco)

Comandos Equivalentes

Informações Relacionadas

Introduction

Este documento descreve como converter uma configuração de switching de Camada 2 do Cisco IOS[®] para uma configuração de Rede Virtual Privada (L2VPN) de Camada 2 do Cisco IOS XR.

Prerequisites

Requirements

Não existem requisitos específicos para este documento.

Componentes Utilizados

Este documento não se restringe a softwares específicos, mas se restringe a versões de hardware relacionadas ao 9000 Series Aggregated Service Router (ASR) que usam o modelo Ethernet Virtual Circuit (EVC) para configurar L2VPN. Os roteadores ASR 9000 Series usam o modelo EVC, enquanto os roteadores do Sistema de Roteamento de Portadora (CRS) que executam o Cisco IOS XR não usam.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is

live, make sure that you understand the potential impact of any command.

Informações de Apoio

O roteador ASR 9000 Series não segue o modelo IEEE de configuração da Camada 2 (L2), mais notavelmente **802.1Q** e **802.1AD**. Em vez disso, ele usa o modelo EVC. O modelo EVC permite que o Cisco IOS XR aproveite as marcas de VLAN **802.1Q** atuais de uma nova maneira. Tradicionalmente, a marca VLAN define a classificação, a VLAN, o encaminhamento e a tabela CAM (Content Addressable Memory) a ser usada para executar uma pesquisa de endereço MAC. Com o modelo EVC, esse conceito é dissociado para permitir mais flexibilidade e maior escala. O modelo EVC elimina a restrição do Cisco IOS de um máximo de 4.096 VLANs.

O EVC usa os seguintes componentes:

- EFP (Ethernet Flow Point) EFP é uma subinterface lógica de L2 usada para classificar o tráfego em uma interface física ou de pacote.
- EVC O EVC é uma representação completa de uma única instância de L2. Um EFP é
 definido como um ponto final de um EVC dentro de um nó. Como vários EVCs podem passar
 por uma interface física, o objetivo principal de uma configuração de EFP é reconhecer o
 tráfego que pertence a um EVC específico nessa interface e aplicar o comportamento de
 encaminhamento e os recursos específicos desse EVC.
- Domínio de ponte (BD) Um BD é um domínio de broadcast Ethernet interno ao dispositivo.
 O BD permite dissociar a VLAN do domínio de broadcast. O BD tem mapeamentos de um para muitos com EFPs: todos os EFPs em um nó para um EVC específico são agrupados com o uso do BD. Se os EFPs pertencerem ao mesmo BD e tiverem o mesmo número de BD, os EFPs receberão tráfego mesmo que tenham números de VLAN diferentes.

Problema

O Cisco IOS XR em roteadores ASR 9000 Series usa o modelo Ethernet Virtual Circuit (EVC). O modelo EVC não tem o conceito de troncos, interfaces VLAN ou uma interface virtual de switch (SVI). Troncos, interfaces VLAN e SVIs do Cisco IOS devem ser convertidos para configurações do Cisco IOS XR através de subinterfaces, L2VPN BDs e interfaces virtuais de ponte (BVIs). O modelo EVC pode ser novo para alguns usuários do Cisco IOS quando migram pela primeira vez para o Cisco IOS XR.

Solução

A configuração no Cisco IOS XR consiste em três etapas:

- 1. Crie o EFP através da configuração de uma interface ou subinterface com a opção **I2transport**, que representa uma VLAN.
- 2. Crie um BD para agrupar os EFPs.

3. Quando as SVIs de Camada 3 (L3) são necessárias, configure via **interface BVI** no Cisco IOS XR, em vez de **interface vlan** no Cisco IOS, para fornecer funções básicas de L3 para as interfaces de L2 que pertencem ao BD.

Observação: as interfaces BVI não suportam marcas de VLAN; portanto, para que o BVI manipule o tráfego de entrada no EFP, a marca de VLAN deve ser exibida no ingresso e adicionada na saída. Isso é concluído com o comando **rewrite**.

Converter uma configuração

Este exemplo ilustra como converter uma configuração do Cisco IOS para o Cisco IOS XR.

Configuração do IOS

```
interface GigabitEthernet3/13
switchport
switchport access vlan 4
speed 1000
duplex full
interface GigabitEthernet3/14
switchport
switchport access vlan 130
speed 1000
duplex full
interface GigabitEthernet3/15
switchport
switchport access vlan 133
speed 1000
duplex full
interface TenGigabitEthernet13/3
description IOS Trunk
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1*,4,130,133
switchport mode trunk
no ip address
interface Vlan 4
ip address 10.10.4.1 255.255.255.0
interface Vlan 130
ip address 10.10.130.1 255.255.255.0
*Vlan 1 is the native vlan
```

Crie uma interface EFP. O Cisco IOS XR implementa uma CLI estruturada para a configuração EFP e EVC. Para configurar um EFP, use estes comandos de configuração de interface:

• comando l2transport - Este comando identifica uma subinterface, uma porta física ou uma interface pai de porta de pacote como um EFP.

- comando encapsulation Este comando é usado para especificar critérios de correspondência de VLAN.
- rewrite command Este comando é usado para especificar os critérios de regravação de marcas de VLAN.

Configuração do ASR 9000 para Interfate TenGigabitEthernet 13/3 (porta tronco)

```
interface GigabitEthernet 0/0/0/1
interface GigabitEthernet 0/0/0/1.1 l2transport
encapsulation dotlq untagged **
interface GigabitEthernet 0/0/0/1.4 12transport
encapsulation dot1q 4
rewrite ingress tag pop 1 symmetric
interface GigabitEthernet 0/0/0/2
interface GigabitEthernet 0/0/0/2.130 l2transport
encapsulation dot1q 130
rewrite ingress tag pop 1 symmetric
interface GigabitEthernet 0/0/0/3
interface GigabitEthernet 0/0/0/3.133 12transport
encapsulation dot1q 133
rewrite ingress tag pop 1 symmetric
interface tengig0/0/0/0
interface tengig0/0/0/0.4 l2transport
no ip address
encapsulation dot1q 4
rewrite ingress tag pop 1 symmetric
interface tengig0/0/0/0.130 l2transport
no ip address
encapsulation dot1q 130
rewrite ingress tag pop 1 symmetric
interface tengig0/0/0/0.133 l2transport
no ip address
encapsulation dot1q 133
rewrite ingress tag pop 1 symmetric
```

Para adicionar a VLAN 1 nativa, desmarque o tráfego e crie uma subinterface l2transport com encapsulamento não marcado dot1q. Use o comando **encapsulation dot1q untagged** em uma interface l2transport ou em uma subinterface se a porta estiver conectada a uma configuração de porta para acesso a switchport no dispositivo IOS.

Aqui está um exemplo:

```
interface Gigabitethernet 1/1
switchport
switchport access vlan 3

IOSXR:
interfage GigabitEthernet 0/1/1/1.1 12transport
encapsulation dotlq untagged
```

Depois que o EFP é criado, uma interface BVI pode ser criada e adicionada ao BD. A interface BVI é usada para acomodar a interface VLAN no Cisco IOS.

```
interface BVI4
ipv4 address 10.10.4.1 255.255.0.0
!
interface BVI130
ipv4 address 10.130.1.1 255.255.0.0
```

O número da interface BVI não precisa necessariamente corresponder ao identificador da VLAN. O mesmo é verdadeiro para o número de subinterface das interfaces de transporte L2. No entanto, para esclarecimento neste exemplo, o número BVI corresponde à tag **dot1q**, bem como ao número da subinterface EFP.

Neste exemplo, um BD I2-VPN é criado para ligar os EFPs e os BVIs:

```
12vpn
bridge group VLAN4
bridge-domain VLAN4
interface ten0/0/0.4
!
interface GigabitEthernet 0/0/0/1.4
!
routed interface bvi4
!
!
bridge-domain VLAN130
interface ten0/0/0/0.130
!
interface GigabitEthernet 0/0/0/2.130
!
routed interface bvi130
!
routed interface bvi133
interface ten0/0/0/0.133
!
interface GigabitEthernet 0/0/0/3.133
!
interface GigabitEthernet 0/0/0/3.133
!
```

O Grupo de Bridge (BG) é uma hierarquia de configuração não funcional que conecta vários BDs em parte do mesmo grupo funcional. Funciona exatamente como a criação de vários grupos individuais com seus domínios, ao contrário de um grupo com vários domínios.

Comandos Equivalentes

Esta tabela lista outros comandos disponíveis no Cisco IOS e os comandos equivalentes no Cisco IOS XR configurados no BD:

IOS IOS XR

switchport block unicast} flooding unknown-unicast disable

switchport port-security maximum limite máximo de mac (intervalo de 5 a 512000)

violação de segurança de porta de ação de limite mac (flood, no-flood, shutdown) notificação de limite

(both, none, trap)

mac address-table notification mac- Énecessário configurar o seguinte: mac secure action none mac se

logging

switchport port-security mac-address interface x mac limit max y static-mac-address H.H.H

Informações Relacionadas

switchport

- O modelo Carrier Ethernet dos roteadores Cisco ASR 9000 Series
- Configurando interfaces VLAN 802.1Q no roteador Cisco ASR 9000 Series
- Implementação de serviços de camada 2 multiponto
- Entendendo os circuitos virtuais Ethernet (EVC)
- ASR9000/XR: Migração do IOS para o IOS-XR como guia inicial
- Correspondência de VLAN flexível, EVC, regravação de marcação de VLAN, IRB/BVI e definição de serviços L2
- Suporte Técnico e Documentação Cisco Systems

Sobre esta tradução

A Cisco traduziu este documento com a ajuda de tecnologias de tradução automática e humana para oferecer conteúdo de suporte aos seus usuários no seu próprio idioma, independentemente da localização.

Observe que mesmo a melhor tradução automática não será tão precisa quanto as realizadas por um tradutor profissional.

A Cisco Systems, Inc. não se responsabiliza pela precisão destas traduções e recomenda que o documento original em inglês (link fornecido) seja sempre consultado.