Construa um anel de pacote resiliente com quatro nós através de uma placa ML no Cisco ONS 15454

Contents

Introduction Prerequisites Requirements Componentes Utilizados Conventions Topologia Crie um RPR de quatro nós Verificação Passo 1 Passo 2 Etapa 3 Passo 4 Informações Relacionadas

Introduction

Este documento descreve a configuração para criar um RPR (Resilient Packet Ring) com quatro nós através de placas de várias camadas (ML) no Cisco ONS 15454.

Prerequisites

Requirements

A Cisco recomenda que você tenha conhecimento destes tópicos:

- Cisco ONS 15454
- Placas Ethernet Cisco ONS 15454 ML-Series
- Cisco IOS® Software
- Bridging e roteamento IP

Componentes Utilizados

As informações neste documento são baseadas nestas versões de software e hardware:

- Cisco ONS 15454 que executa o ONS versão 5.02
- ML (incluído como parte do ONS 5.02 release) que executa o Cisco IOS Software Release 12.2.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Consulte as <u>Convenções de Dicas Técnicas da Cisco para obter mais informações sobre</u> <u>convenções de documentos.</u>

Topologia

Este documento usa uma configuração de laboratório com quatro nós ONS 15454, ou seja, Studio Node 1, Studio Node 2, Studio Node 3 e Studio Node 4 (consulte a Figura 1). Esses quatro nós formam um OC48 Unidirectional Path Switched Ring (UPSR).

Observação: para facilitar o entendimento, o resto deste documento se refere a esses nós como nó 1, nó 2, nó 3 e nó 4.

Figura 1 - Topologia

Cada nó tem uma placa ML 100T instalada no slot 6 (consulte a Figura 2).

Figura 2: Visão do nó: Placa ML 100T no slot 6

<u>A Figura 3</u> mostra a topologia RPR Ring. A configuração do RPR é baseada nessa topologia.

Figura 3 - Topologia RPR Ring

Crie um RPR de quatro nós

Conclua estes passos para criar um RPR com quatro nós:

1. Monte um circuito entre POS 1 no nó 1 e POS 0 no nó 2.Conclua estes passos:Escolha **Circuito > Criar**.A caixa de diálogo Criação de circuito é exibida:**Figura 4: Criação de circuito**

👸 Circuit Creation	· 🛛 🔀	
CISCO SYSTEMS	Circuit Type: STS VT VT Tunnel VT Aggregation Point STS-V VT-V OCHNC	
	Num. of circuits: 1 Auto-ranged	
	Next> Cancel Help	Selecione STS e

clique em **Avançar**.A janela Atributos de circuito é exibida (consulte a <u>Figura 5</u>).Digite o nome do circuito no campo Nome.**Figura 5: Janela de atributos do circuito**

👸 Circuit Creation						×
CISCO SYSTEMS	Circuit Attributes Circuit Name: DATAN1N2 Type: STS Size: STS-24c ✓ Bidirectional Create cross-connects of State State: IS ▲ Apply to drop ports	vnly (TL1-like)	UPSR Provision Revertion SF the SD the Protected	on working go ive Reversio reshold: 1E-0 reshold: 1E-0 Drops (non-E	& return on pr on time (min): 4 6 on PDI-P Ethernet)	
		<back< td=""><td>Next></td><td>Finish</td><td>Cancel</td><td>Help</td></back<>	Next>	Finish	Cancel	Help

Selecione o tamanho relevante do circuito na lista Tamanho e o estado apropriado na lista

Estado.Clique em Next.A janela Fonte é exibida (consulte <u>Figura 6</u>).Selecione **Studio Node 1** como o nó de origem na lista Node.Selecione **6 (ML100T)** na lista de slots e escolha **1 (POS)** na lista de portas.**Observação:** sempre inicie o anel de pos 0 para pos 1.**Figura 6: Janela de origem**

Clique em Next.A janela Destino é exibida (consulte a <u>Figura 7</u>).Selecione **Studio Node 2** como o nó de destino na lista Node.Selecione **6 (ML100T)** na lista de slots e escolha **1** (**POS)** na lista de portas.**Figura 7 - Janela de destino**

🔀 Circuit Creation						×
Circuit Attributes	Destination					
Name: DATAN1N2 Type: STS Size: STS-24c Direction: 2-way State: IS Ckt state to drops: false Protected Drops: No Auto-ranging: false Source Studio Node 1/s6/pPOS-1	No Destination Slot: 6 (ML1 Port: 0 (POS) STS:	de: Studio M 00T)	lode 2	Use Use	Secondary Des	tination
		<back< td=""><td>Next></td><td>Finish</td><td>Cancel</td><td>Help</td></back<>	Next>	Finish	Cancel	Help

Clique em Next.A janela Preferências de roteamento de circuito é exibida (consulte <u>a Figura</u> <u>8</u>).Desmarque a caixa de seleção **Caminho totalmente protegido** quando a proteção for executada pelo RPR. Você pode verificar **Rota automaticamente** ou rotear manualmente o circuito. Se você optar por rotear manualmente, vá para a etapa m.Desmarque a caixa de seleção **Caminho totalmente protegido.Figura 8: Janela Preferências de roteamento de circuito**

Clique em Next.A janela Route Review/Edit é exibida (consulte <u>a Figura 9</u>).Selecione o nó de origem e clique em Add Span.Clique em Finish.A criação do circuito está concluída. <u>A Figura 9</u> mostra o circuito entre POS 1 no nó 1 e POS 0 no nó 2.**Figura 9 - Circuito entre POS1 no** Nó 1 e POS0 no Nó 2

 Monte um circuito entre POS 1 no nó 2 e POS 0 no nó 3.Use o mesmo procedimento detalhado descrito na <u>Etapa 1</u>. <u>A Figura 10</u> mostra o circuito entre POS 1 no nó 2 e POS 0 no nó 3.Figura 10 - Circuito entre POS 1 no nó 2 e POS 0 no nó 3

3. Da mesma forma, crie um circuito entre POS 1 no nó 3 e POS 0 no nó 4.Use o mesmo procedimento detalhado descrito na <u>Etapa 1</u>. <u>A Figura 11</u> mostra o circuito entre POS 1 no nó 3 e POS 0 no nó 4.Figura 11 - Circuito entre POS 1 no nó 3 e POS 0 no nó 4

4. Finalmente, crie um circuito entre POS 1 no nó 4 e POS 0 no nó 1.Use o mesmo procedimento detalhado descrito na <u>Etapa 1</u>. <u>A Figura 12</u> mostra o circuito entre POS 1 no nó 4 e POS 0 no nó 1.Figura 12 - Circuito entre POS 1 no nó 4 e POS 0 no nó 1

5. Configure a placa ML100T no nó 1.Conclua estes passos:Ative o Integrated Bridging and Routing (IRB).

bridge irb

Configure a interface SRP:

```
interface SPR1
ip address 10.1.1.1 255.0.0.0
carrier-delay msec 50
no keepalive
spr station-id 1
spr wrap delayed
hold-queue 150 in
```

Configure a interface POS0:

```
interface POS0
no ip address
carrier-delay msec 50
spr-intf-id 1
crc 32
```

Configurar a interface POS1:

```
!
interface POS1
no ip address
spr-intf-id 1
crc 32
!
```

6. Configure a placa ML100T no nó 2. Conclua estes passos: Ative o Integrated Bridging and

```
Routing (IRB).
  bridge irb
  Configure a interface SRP:
  interface SPR1
   ip address 10.1.1.2 255.0.0.0
   carrier-delay msec 50
   no keepalive
   spr station-id 2
   spr wrap delayed
   hold-queue 150 in
  Configure a interface POS0:
  interface POS0
   no ip address
   carrier-delay msec 50
   spr-intf-id 1
   crc 32
  Configurar a interface POS1:
  Т
  interface POS1
   no ip address
   spr-intf-id 1
   crc 32
  !
7. Configure a placa ML100T no nó 3. Conclua estes passos: Ative o Integrated Bridging and
  Routing (IRB).
  bridge irb
  Configure a interface SRP:
  interface SPR1
   ip address 10.1.1.3 255.0.0.0
   carrier-delay msec 50
   no keepalive
   spr station-id 3
   spr wrap delayed
   hold-queue 150 in
  Configure a interface POS0:
  interface POS0
   no ip address
   carrier-delay msec 50
   spr-intf-id 1
   crc 32
  Configurar a interface POS1:
  !
  interface POS1
   no ip address
   spr-intf-id 1
   crc 32
  I.
Configure a placa ML100T no nó 4. Conclua estes passos: Ative o Integrated Bridging and
  Routing (IRB).
  bridge irb
  Configure a interface SRP:
  interface SPR1
   ip address 10.1.1.4 255.0.0.0
   carrier-delay msec 50
   no keepalive
   spr station-id 4
```

spr wrap delayed hold-queue 150 in

Configure a interface POS0:

```
interface POS0
no ip address
carrier-delay msec 50
spr-intf-id 1
crc 32
Configurar a interface POS1:
!
interface POS1
no ip address
spr-intf-id 1
crc 32
!
```

Verificação

Para verificar a configuração, você deve fazer ping com êxito em todos os nós de todos os outros nós. Esta seção fornece um procedimento de verificação passo a passo para garantir que a configuração esteja correta.

Passo 1

Conclua estes passos:

```
1. Faça ping no nó 2, nó 3 e nó 4 do nó 1:
  Node_1_Slot_6#ping 10.1.1.2
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/11/32 ms
  Node_1_Slot_6#ping 10.1.1.3
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.3, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/8/24 ms
  Node_1_Slot_6#ping 10.1.1.4
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.4, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms
2. Emita o comando show cdp neighbor.
  Node_1_Slot_6#show cdp neighbor
  Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
                 S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
              Local Intrfce Holdtme Capability Platform Port ID
  Device ID
  Node_4_Slot_6 SPR1
                                  137
                                              R
                                                       ONS-ML100TSPR1
                                  162
                                              RТ
  Node_3_Slot_6 SPR1
                                                       ONS-ML100TSPR1
  Node_2_Slot_6 SPR1
                                  128
                                              R
                                                      ONS-ML100TSPR1
```

Passo 2

Em seguida, faça o seguinte:

1. Do nó 2, faça ping com êxito no nó 1, nó 3 e nó 4.

```
Node_2_Slot_6#ping 10.1.1.1
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/12 ms
  Node_2_Slot_6#ping 10.1.1.3
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.3, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms
  Node_2_Slot_6#ping 10.1.1.4
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.4, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms
Emita o comando show cdp neighbor.
  Node_2_Slot_6#show cdp neighbor
  Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
```

	S - Switch,	H - Host, I	- IGMP, r -	Repeater, P - Phone
Device ID	Local Intrfce	Holdtme	Capability	Platform Port ID
Node_4_Slot_6	SPR1	175	R	ONS-ML100TSPR1
Node_1_Slot_6	SPR1	171	RТ	ONS-ML100TSPR1
Node_3_Slot_6	SPR1	141	RТ	ONS-ML100TSPR1

Etapa 3

Conclua estes passos:

1. Do nó 3, faça ping com êxito no nó 1, nó 2 e nó 4.

```
Node_3_Slot_6#ping 10.1.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/8/12 ms
Node_3_Slot_6#ping 10.1.1.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/12 ms
Node_3_Slot_6#ping 10.1.1.4
```

Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.1.4, timeout is 2 seconds: !!!!! Success rate is 80 percent (4/5), round-trip min/avg/max = 4/5/8 ms

2. Emita o comando show cdp neighbor.

```
Node_3_Slot_6#show cdp neighbor
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
               S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
             Local Intrfce Holdtme Capability Platform Port ID
Device ID
Node_4_Slot_6 SPR1
                               170
                                                    ONS-ML100TSPR1
                                           R
                                           RТ
Node_1_Slot_6
             SPR1
                                166
                                                   ONS-ML100TSPR1
Node_2_Slot_6 SPR1
                                161
                                           R
                                                   ONS-ML100TSPR1
```


Por fim, faça o seguinte:

1. Do nó 4, faça ping com êxito no nó 1, nó 2 e nó 3. Node_4_Slot_6#ping 10.1.1.1

Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/12 ms Node_4_Slot_6#ping 10.1.1.2 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms Node_4_Slot_6#ping 10.1.1.3 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.1.3, timeout is 2 seconds: !!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/12 ms

2. Emita o comando show cdp neighbor.

Node_4_Slot_6#show cdp neighbor Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone Device ID Local Intrfce Holdtme Capability Platform Port ID Node_1_Slot_6 SPR1 152 R T ONS-ML100TSPR1 Node_3_Slot_6 SPR1 122 R T ONS-ML100TSPR1 Node_2_Slot_6 SPR1 147 R ONS-ML100TSPR1

Informações Relacionadas

<u>Suporte Técnico e Documentação - Cisco Systems</u>