Exemplo de engenharia básica de tráfego de MPLS usando configuração de OSPF

Contents

Introduction Prerequisites Requirements Componentes Utilizados Conventions Componentes funcionais Configurar Diagrama de Rede Manual de configuração rápida Arquivos de configuração Verificar Exemplo de saída do comando show Troubleshoot Informações Relacionadas

Introduction

Este documento fornece uma configuração de exemplo para a implementação de engenharia de tráfego (TE) em uma MPLS (rede existente de switching de rótulo multiprotocolo) usando Frame Relay e OSPF (Open Shortest Path First). Nosso exemplo implementa dois túneis dinâmicos (configuração automática pelos Label Switch Routers "LSR" de ingresso) e dois túneis que usam caminhos explícitos.

TE é um nome genérico que corresponde ao uso de diferentes tecnologias para otimizar a utilização de capacidade e topologia de um determinado backbone.

O MPLS TE oferece uma maneira de integrar as capacidades de TE (tais como as usadas nos protocolos da camada 2 como ATM) em protocolos da camada 3 (IP). O MPLS TE usa uma extensão para protocolos existentes (IS-IS [Intermediate System-to-Intermediate System], RSVP [Resource Reservation Protocol], OSPF) para calcular e estabelecer túneis unidirecionais configurados de acordo com a restrição da rede. Os fluxos de tráfego são mapeados em túneis diferentes dependendo de seus destinos.

Prerequisites

Requirements

Não existem requisitos específicos para este documento.

Componentes Utilizados

As informações neste documento são baseadas nas versões de software e hardware:

- Versões do software IOS® Cisco 12.0(11)S e 12.1(3a)T
- Cisco 3600 Routers

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Consulte as <u>Convenções de Dicas Técnicas da Cisco para obter mais informações sobre</u> <u>convenções de documentos.</u>

Componentes funcionais

A tabela a seguir descreve os componentes funcionais deste exemplo de configuração:

Componen te	Descrição
Interfaces de túnel de IP	Camada 2: Uma interface de túnel MPLS é a principal de um LSP (Caminho comutado do rótulo). É configurada com um conjunto de requisitos de recursos, tais como largura de banda e prioridade. Camada 3: a interface de túnel LSP é a extremidade principal de um link virtual unidirecional para o destino do túnel.
RSVP com extensão TE	O RSVP é usado para estabelecer e manter os túneis de LSP com base no caminho calculado usando as mensagens PATH e RESV. A especificação do protocolo RSVP foi estendida para que as mensagens RESV distribuam também informações sobre o rótulo.
Link-State Interior Gateway Protocol (IGP) [IS- IS ou OSPF com uma extensão TE]	Usado para obtenção de informações de topologia de inundação e recursos a partir do módulo de gerenciamento de enlaces. O IS- IS usa os novos TLVs (Type-Length-Values); O OSPF usa anúncios de estado de link tipo 10 (também chamados de LSAs opacos).
Módulo de	Opera apenas no início do LSP e determina

cálculo de caminho MPLS TE	um caminho utilizando informações do banco de dados do estado do enlace.
Módulo de gerenciam ento de enlaces TE MPLS	Em cada salto LSP, esse módulo executa a admissão de chamada do link nas mensagens de sinalização de RSVP e a contabilidade da topologia e das informações de recurso a serem liberadas pelo OSPF ou pelo IS-IS.
Encaminh amento de switching de rótulo	Mecanismo básico de encaminhamento de MPLS com base em rótulos.

Configurar

Nesta seção, você encontrará informações para configurar os recursos descritos neste documento.

Nota:Use a Command Lookup Tool (somente clientes registrados) para obter mais informações sobre os comandos usados neste documento.

Diagrama de Rede

Este documento utiliza a seguinte configuração de rede:

Manual de configuração rápida

Você pode usar as seguintes etapas para executar uma configuração rápida. Consulte <u>MPLS</u> <u>Traffic Engineering e Enhancements</u> para obter informações mais detalhadas.

- Configure a rede com a configuração de costume. (Nesse caso, usamos o Frame Relay). Observação: é obrigatório configurar uma interface de loopback com uma máscara IP de 32 bits. Esse endereço será utilizado para configuração do NPLS Network e TE pelo Routing Protocol. Esse endereço de circuito fechado deve ser acessível por meio da tabela de roteamento global.
- Configurando um Routing Protocol para a rede MPLS. Deve ser um protocolo de estado de link (IS-IS ou OSPF). No modo de configuração de Routing Protocol, digite os seguintes comandos:Para IS-IS:

```
metric-style [wide | both]
mpls traffic-eng router-id LoopbackN
mpls traffic-eng [level-1 | level-2 |]
```

Para OSPF:

```
mpls traffic-eng area X
mpls traffic-eng router-id LoopbackN (must have a 255.255.255.255 mask)
```

- 3. Habilitar MPLS TE. Insira o ip cef (ou o ip cef distribuído se disponível para aprimorar o desempenho) no modo de configuração geral. Habilite o MPLS (tag-switching ip) em cada interface envolvida. Insira o túnel de engenharia de tráfego mpls para ativar o TE MPLS, bem como o RSVP para túneis TE de largura zero.
- 4. Ative o RSVP inserindo **ip rsvp bandwidth XXX** em cada interface em questão para túneis de largura de banda diferente de zero.
- 5. Configurar canais para serem usados para TE. Várias opções podem ser configuradas para túnel TE MPLS, mas o comando tunnel mode mpls traffic-eng é obrigatório. O comando tunnel mpls traffic-eng autoroute announce anuncia a presença do túnel através do Routing Protocol. Observação: não se esqueça de usar loopbackN não numerado de ip para o endereço IP das interfaces de túnel. Esta configuração mostra dois túneis dinâmicos (Pescara_t1 e Pescara_t3) com larguras de banda (e prioridades) diferentes indo do roteador Pescara para o roteador Pesaro e dois túneis (Pescaro_t158 e Pesaro_t159) usando um caminho explícito do Pesaro ao Pescara.

Arquivos de configuração

Este documento utiliza as configurações mostradas abaixo. Apenas as partes relevantes dos arquivos de configuração estão incluídas. Os comandos usados para ativar o MPLS estão em texto azul; os comandos específicos do TE (incluindo RSVP) estão em texto **negrito**.

```
Pesaro
Current configuration:
!
version 12.1
1
hostname Pesaro
!
ip cef ! mpls traffic-eng tunnels
1
interface Loopback0
 ip address 10.10.10.6 255.255.255.255
!
interface Tunnel158
 ip unnumbered Loopback0
 tunnel destination 10.10.10.4
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng autoroute announce
```

```
tunnel mpls traffic-eng priority 2 2
tunnel mpls traffic-eng bandwidth 158
tunnel mpls traffic-eng path-option 1 explicit name low
l
interface Tunnel159
ip unnumbered Loopback0
tunnel destination 10.10.10.4
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 4 4
tunnel mpls traffic-eng bandwidth 159
tunnel mpls traffic-eng path-option 1 explicit name
straight
!
interface Serial0/0
no ip address
encapsulation frame-relay
interface Serial0/0.1 point-to-point
bandwidth 512
ip address 10.1.1.22 255.255.255.252
 tag-switching ip mpls traffic-eng tunnels
frame-relay interface-dlci 603
ip rsvp bandwidth 512 512
!
router ospf 9
network 10.1.1.0 0.0.0.255 area 9
network 10.10.10.0 0.0.0.255 area 9
mpls traffic-eng area 9
mpls traffic-eng router-id Loopback0
ip classless
```

```
ip explicit-path name low enable
next-address 10.1.1.21
next-address 10.1.1.10
next-address 10.1.1.1
next-address 10.1.1.14
!
ip explicit-path name straight enable
next-address 10.1.1.21
next-address 10.1.1.5
next-address 10.1.1.14
1
end
Pescara
Current configuration:
1
version 12.0
1
hostname Pescara
1
ip cef ! mpls traffic-eng tunnels
1
interface Loopback0
ip address 10.10.10.4 255.255.255.255
!
interface Tunnel1
ip unnumbered Loopback0
no ip directed-broadcast
tunnel destination 10.10.10.6
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng autoroute announce
 tunnel mpls traffic-eng priority 5 5
```

```
tunnel mpls traffic-eng bandwidth 25
tunnel mpls traffic-eng path-option 2 dynamic
!
interface Tunnel3
ip unnumbered Loopback0
no ip directed-broadcast
tunnel destination 10.10.10.6
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 6 6
tunnel mpls traffic-eng bandwidth 69
tunnel mpls traffic-eng path-option 1 dynamic
!
interface Serial0/1
no ip address
encapsulation frame-relay
1
interface Serial0/1.1 point-to-point
bandwidth 512
ip address 10.1.1.14 255.255.255.252
mpls traffic-eng tunnels
tag-switching ip frame-relay interface-dlci 401 ip rsvp
bandwidth 512 512
!
router ospf 9
network 10.1.1.0 0.0.0.255 area 9
network 10.10.10.0 0.0.0.255 area 9
mpls traffic-eng area 9
mpls traffic-eng router-id Loopback0
!
end
Pomerol
```

```
Current configuration:
version 12.0
!
hostname Pomerol
1
ip cef ! mpls traffic-eng tunnels
1
interface Loopback0
ip address 10.10.10.3 255.255.255.255
!
interface Serial0/1
no ip address
encapsulation frame-relay
1
interface Serial0/1.1 point-to-point
bandwidth 512
ip address 10.1.1.6 255.255.255.252
mpls traffic-eng tunnels
tag-switching ip frame-relay interface-dlci 301 ip rsvp
bandwidth 512 512 ! interface Serial0/1.2 point-to-point
bandwidth 512 ip address 10.1.1.9 255.255.255.252 mpls
traffic-eng tunnels
tag-switching ip frame-relay interface-dlci 302 ip rsvp
bandwidth 512 512
1
interface Serial0/1.3 point-to-point
bandwidth 512
ip address 10.1.1.21 255.255.255.252
mpls traffic-eng tunnels
 tag-switching ip frame-relay interface-dlci 306 ip rsvp
bandwidth 512 512
!
router ospf 9
```

```
network 10.1.1.0 0.0.0.255 area 9
 network 10.10.10.0 0.0.0.255 area 9
 mpls traffic-eng area 9
 mpls traffic-eng router-id Loopback0
!
ip classless
!
end
Pulligny
Current configuration:
!
version 12.1
!
hostname Pulligny
!
ip cef ! mpls traffic-eng tunnels
!
interface Loopback0
 ip address 10.10.10.2 255.255.255.255
!
interface Serial0/1
 no ip address
 encapsulation frame-relay
!
interface Serial0/1.1 point-to-point
 bandwidth 512
 ip address 10.1.1.2 255.255.255.252
 mpls traffic-eng tunnels
 tag-switching ip frame-relay interface-dlci 201 ip rsvp
bandwidth 512 512
1
interface Serial0/1.2 point-to-point
```

```
bandwidth 512
 ip address 10.1.1.10 255.255.255.252
mpls traffic-eng tunnels
 tag-switching ip frame-relay interface-dlci 203 ip rsvp
bandwidth 512 512
!
router ospf 9
network 10.1.1.0 0.0.0.255 area 9
network 10.10.10.0 0.0.0.255 area 9
mpls traffic-eng area 9
mpls traffic-eng router-id Loopback0
1
ip classless
!
end
Pauillac
!
version 12.1
!
hostname pauillac
!
ip cef ! mpls traffic-eng tunnels
!
interface Loopback0
ip address 10.10.10.1 255.255.255.255
!
interface Serial0/0
no ip address
encapsulation frame-relay
!
interface Serial0/0.1 point-to-point
bandwidth 512
```

```
ip address 10.1.1.1 255.255.255.252
mpls traffic-eng tunnels
 tag-switching ip frame-relay interface-dlci 102 ip rsvp
bandwidth 512 512
1
interface Serial0/0.2 point-to-point
bandwidth 512
ip address 10.1.1.5 255.255.255.252
mpls traffic-eng tunnels
 tag-switching ip frame-relay interface-dlci 103 ip rsvp
bandwidth 512 512
1
interface Serial0/0.3 point-to-point
bandwidth 512
ip address 10.1.1.13 255.255.255.252
mpls traffic-eng tunnels
 tag-switching ip frame-relay interface-dlci 104 ip rsvp
bandwidth 512 512
1
router ospf 9
network 10.1.1.0 0.0.0.255 area 9
network 10.10.10.0 0.0.0.255 area 9
mpls traffic-eng area 9
mpls traffic-eng router-id Loopback0
!
ip classless
!
end
```

Verificar

Esta seção fornece informações que você pode usar para confirmar se sua configuração está funcionando adequadamente.

Os comandos show gerais estão ilustrados em <u>Configurando a Engenharia Básica de Tráfego</u> <u>MPLS usando IS-IS</u>. Os comandos a seguir são específicos para TE de MPLS com OSPF e são ilustrados abaixo:

- · show ip ospf mpls traffic-eng link
- show ip ospf database opaque-area

A <u>Output Interpreter Tool (somente clientes registrados) (OIT) oferece suporte a determinados</u> <u>comandos show.</u> Use a OIT para exibir uma análise da saída do comando show.

Exemplo de saída do comando show

Você pode usar o **comando show ip ospf mpls traffic-eng link** para ver o que será anunciado pelo OSPF em um determinado roteador. As características do RSVP são exibidas em negrito a seguir, indicando a largura de banda que pode ser reservada, que está sendo anunciada e usada. Você pode ver a largura de banda usada por Pescara_t1 (em Prioridade 5) e Pescara_t3 (em Prioridade 6).

Pesaro# show ip ospf mpls traffic-eng link

```
OSPF Router with ID (10.10.10.61) (Process ID 9)
Area 9 has 1 MPLS TE links. Area instance is 3.
Links in hash bucket 48.
 Link is associated with fragment 0. Link instance is 3
   Link connected to Point-to-Point network
   Link ID : 10.10.10.3 Pomerol
    Interface Address : 10.1.1.22
    Neighbor Address : 10.1.1.21
    Admin Metric : 195
    Maximum bandwidth : 64000
    Maximum reservable bandwidth : 64000
    Number of Priority : 8
                           Priority 1 : 64000
    Priority 0 : 64000
    Priority 2 : 64000
                           Priority 3 : 64000
    Priority 4 : 64000
Priority 6 : 24000
                            Priority 5 : 32000
                            Priority 7 : 24000
    Affinity Bit : 0x0
```

O comando **show ip ospf database** pode ser restrito aos LSAs tipo 10 e mostra o banco de dados usado pelo processo TE MPLS para calcular a melhor rota (para TE) para túneis dinâmicos (Pescara_t1 e Pescara_t3 neste exemplo). Isso pode ser verificado no seguinte resultado parcial:

Pesaro# show ip ospf database opaque-area

```
OSPF Router with ID (10.10.10.61) (Process ID 9)
Type-10 Opaque Link Area Link States (Area 9)
LS age: 397
Options: (No TOS-capability, DC)
LS Type: Opaque Area Link
Link State ID: 1.0.0.0
Opaque Type: 1
Opaque ID: 0
Advertising Router: 10.10.10.1
LS Seq Number: 80000003
Checksum: 0x12C9
Length: 132
```

```
Fragment number : 0
   MPLS TE router ID : 10.10.10.1 Pauillac
  Link connected to Point-to-Point network
     Link ID : 10.10.10.3
     Interface Address : 10.1.1.5
     Neighbor Address : 10.1.1.6
     Admin Metric : 195
     Maximum bandwidth : 64000
     Maximum reservable bandwidth : 48125
     Number of Priority : 8
                            Priority 1 : 48125
     Priority 0 : 48125
     Priority 2 : 48125
                            Priority 3 : 48125
     Priority 4 : 48125
                             Priority 5 : 16125
     Priority 6 : 8125
                             Priority 7 : 8125
     Affinity Bit : 0x0
   Number of Links : 1
 LS age: 339
 Options: (No TOS-capability, DC)
 LS Type: Opaque Area Link
 Link State ID: 1.0.0.0
 Opaque Type: 1
 Opaque ID: 0
 Advertising Router: 10.10.10.2
 LS Seq Number: 8000001
 Checksum: 0x80A7
 Length: 132
 Fragment number : 0
   MPLS TE router ID : 10.10.10.2 Pulligny
  Link connected to Point-to-Point network
     Link ID : 10.10.10.1
     Interface Address : 10.1.1.2
     Neighbor Address : 10.1.1.1
     Admin Metric : 195
     Maximum bandwidth : 64000
     Maximum reservable bandwidth : 64000
     Number of Priority : 8
     Priority 0 : 64000
                            Priority 1 : 64000
     Priority 2 : 64000
                            Priority 3 : 64000
     Priority 4 : 64000
                             Priority 5 : 64000
     Priority 6 : 64000
                             Priority 7 : 64000
     Affinity Bit : 0x0
   Number of Links : 1
LS age: 249
 Options: (No TOS-capability, DC)
 LS Type: Opaque Area Link
 Link State ID: 1.0.0.0
 Opaque Type: 1
 Opaque ID: 0
 Advertising Router: 10.10.10.3
 LS Seq Number: 8000004
 Checksum: 0x3DDC
 Length: 132
 Fragment number : 0
```


Atualmente, não existem informações disponíveis específicas sobre Troubleshooting para esta configuração.

Informações Relacionadas

- MPLS Support Page
- Página de Suporte do IP Routing
- <u>Suporte Técnico e Documentação Cisco Systems</u>