Entendendo e Troubleshooting de SDLC para Tradução de Mídia de Rede LLC

Contents

Introduction **Prerequisites** Requirements Componentes Utilizados **Conventions SDLLC** Configuração de SDLC Configuração do SDLLC Depuração de SDLLC Tradução de mídia DLSw comandos show Depurando pacotes SDLC durante DLSw/SDLC para PU2.1 Exemplo de tradução de mídia DLSw DLSw executando tradução de mídia reversa Tradução de mídia DLSw local Informações Relacionadas

Introduction

Este documento fornece informações para entender e solucionar problemas de uma tradução de mídia de rede SDLC (Synchronous Data Link Control) para LLC (Logical Link Control).

Prerequisites

Requirements

Não existem requisitos específicos para este documento.

Componentes Utilizados

Este documento não se restringe a versões de software e hardware específicas.

Conventions

Consulte as <u>Convenções de Dicas Técnicas da Cisco para obter mais informações sobre</u> <u>convenções de documentos.</u>

SDLLC

A conversão SDLC-to-LAN (SDLLC) é usada para converter uma sessão SDLC para um dispositivo de Unidade Física 2 (PU2.0) em uma sessão Logical Link Control, tipo 2 (LLC2). Isso é muito útil se você tiver uma grande quantidade de controladores remotos alimentados em uma única porta Token Ring em um processador de front-end (FEP).

O lado esquerdo deste diagrama exibe um FEP com muitas linhas SDLC saindo para locais remotos. O lado direito deste diagrama exibe o mesmo cenário com os roteadores Cisco.

Os roteadores permitem que o FEP tenha apenas a interface Token Ring. A partir desse ponto, há vários locais remotos executando SDLLC para o host, bem como tráfego regular de bridge de rota de origem (SRB).

Observação: o uso de SDLLC para LLC para conversão de SDLC aplica-se somente a dispositivos PU2.0, não à unidade física tipo 2.1 (PU2.1). PU2.1 é suportado em DLSw (Data-Link Switching).

Para configurar o SDLLC, você precisa de um SRB no roteador. Consulte <u>Entendendo e</u> <u>Troubleshooting Local Source-Route Bridging</u> para obter informações sobre como configurar um SRB.

Configuração de SDLC

Como o SDLLC converte de uma interface SDLC, primeiro você precisa do SDLC configurado corretamente. Conclua estes passos para configurar o SDLC:

- 1. Emita o comando **encapsulation sdlc** para alterar o encapsulamento serial para SDLC.
- Emita o comando sdlc role primary para alterar a função do roteador para primary na linha SDLC.Observação: em ambientes de STUN (Serial Tunneling, túnel serial), há funções primárias e secundárias. Consulte <u>Configuração e Troubleshooting de Serial Tunneling</u> (<u>STUN</u>) para obter mais informações.
- 3. Emita o comando sdlc address xx para configurar o endereço de pesquisa do SDLC.

Configuração do SDLLC

Para configurar SDLLC, o primeiro comando emitido é **traddr**. Esse comando define o que o SDLC converte no ambiente LLC2. Conclua estes passos para configurar SDLLC:

1. Emita o comando sdllc traddr xxxx.xxx00 lr bn tr para habilitar a tradução de mídia

SDLLC em uma interface serial.Esse comando informa ao roteador o endereço MAC virtual da estação SDLC. Em seguida, o comando especifica o número do anel local (**Ir**), o número da bridge (**bn**) e o número do anel de destino (**tr**). O **Ir** deve ser exclusivo na rede. O **bn** pode ser um valor de 1 a 15. A **trn** deve ser o anel virtual no roteador. Se estiver configurando o SDLLC local, você poderá fazer com que ele aponte para um anel virtual ou para uma interface (anel físico conectado à interface Token Ring) no roteador.**Observação:** os dois últimos dígitos do endereço MAC neste comando são **00**. Não é possível definir os dois últimos dígitos de **traddr** porque o roteador usa esses dígitos para inserir o endereço SDLC dessa linha. Se você especificar os dois últimos dígitos, o roteador os substituirá pelo endereço SDLC. Em seguida, o host não responde para esse endereço MAC. Por exemplo, se o endereço MAC de negociação estiver configurado como 4000.1234.5678 e o endereço SDLC for 0x01, o roteador usará o MAC de 4000.1234.5601 para representar o dispositivo SDLC no domínio LLC. Além disso, o MAC de troca está em formato não canônico, que é o mesmo formato do quadro Token Ring.

- 2. Emita o comando sdllc xid address xxxxxx para especificar o valor XID (exchange identification) apropriado para a estação SDLC corresponder aos valores do Virtual Telecommunications Access Method (VTAM). Isso é determinado a partir do IDBLK e do IDNUM no nó principal do switch no VTAM. Se isso não coincidir, a troca XID falhará.
- 3. Emita o comando **sdllc partner** *mac-address sdlc-address* para ativar conexões para SDLLC.Isso especifica o endereço MAC do parceiro, que geralmente é o host.

Uma configuração de exemplo simples de SDLLC é exibida. A controladora conectada SDLC aparece como um dispositivo local conectado a Token Ring ao FEP.

Papaya	Mofongo	
source-bridge ring-group 100 source-bridge remote- peer 100 tcp 1.1.1.1 source-bridge remote- peer 100 tcp 1.1.2.1 local-ack interface tokenring 0 ip address 1.1.3.1 255.255.255.0 source-bridge 33 2 100 source-bridge spanning	source-bridge ring group 100 source-bridge remote-peer 100 tcp 1.1.2.1 source-bridge remote-peer 100 tcp 1.1.1.1 local-ack source-bridge sdllc local-ack interface serial 0 encapsulation sdlc-primary sdlc address c6 sdllc traddr 4000.3174.1100 333 3 100 sdllc partner 4000.1111.1111 c1 sdllc xid c1 17200c6	
interface loopback 0 ip address 1.1.1.1 255.255.255.0	interface loopback 0 ip address 1.1.2.1 255.255.255.0	

Depuração de SDLLC

Um problema de SDLLC requer que você solucione dois ambientes diferentes: o mundo SDLC e

o mundo Logical Link Control, tipo 2 (LLC2) para onde você está traduzindo os quadros. Como você pode ter apenas um tipo de controlador, a depuração de SDLLC é mais fácil de entender do que DLSw/SDLC.

Primeiro, observe os fluxos para a inicialização desta sessão específica:

Verifique a resposta do modo de resposta normal definido (SNRM) da controladora. O roteador não inicia a parte do LLC até que a parte do SDLC esteja ativa e em execução.

Emita estes comandos para verificar a resposta do SNRM:

- sdlc_state
- sdllc_state

Neste exemplo, o SNRM é enviado ao controlador, o que altera o estado da linha para SNRMSENT. Se o roteador permanecer nesse estado, ele não recebeu a confirmação não numerada (UA) da controladora. Isso pode significar que algo está errado com a linha SDLC. Se isso ocorrer, a depuração será exibida como:

```
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial1, changed state to up
s4f#
SDLLC_STATE: Serial1 C6 DISCONNECT
  -> SDLC PRI WAIT
SDLC_STATE: (5234984) Serial1 C6 DISCONNECT
   -> SNRMSENT
%SYS-5-CONFIG_I: Configured from console by console
%LINK-3-UPDOWN: Interface Serial1, changed state to up
Seriall SDLC output
                      C693
Seriall SDLC input
                       C673
SDLC_STATE: (5235700) Serial1 C6 SNRMSENT
  -> CONNECT
SDLLC_STATE: Serial1 C6 SDLC PRI WAIT
  -> NET UP WAIT
```

SDLC_STATE: (5235700) Serial1 C6 CONNECT
-> USBUSY

Se o roteador receber o UA, o **sdlc_state** se move de SNRM_SENT para CONNECT. Em seguida, o estado SDLLC se move de SDLC_PRI_WAIT para NET_UP_WAIT. Quando isso ocorre, o roteador pode começar a ativar o lado LLC da conexão. A ação final é começar a enviar RNRs (não pronto para recebimento) para a linha SDLC. Isso desabilita o controlador de enviar qualquer informação até que o lado do LLC esteja operacional.

Em seguida, o roteador envia um explorador para encontrar a localização de seu parceiro.

SDLLC: 0 TEST, dst 4000.1111.1111 src 4000.3174.11c6 dsap 0 ssap 0
To0: out: MAC: acfc: 0x8040 Dst: 4000.1111.1111 Src: c000.3174.11c6 bf: 0x82 0x304A210
To0: out: RIF: 8800.14D3.0642.0210
To0: out: LLC: 0000F300 00800000 000C3BF0 7D000000 00800000 000C3BF0 ln: 25
SDLLC: NET UP WAIT recv FORWARD TEST P/F(F3) 4000.3174.11c6 c000.1111.1111 00 01 -> Serial1
C6
caching rif

A saída anterior exibe a pesquisa de teste sendo enviada e recebida. Como este exemplo tem um controlador conectado localmente e um Token Ring, a pesquisa de teste deixa o roteador procurando o endereço do parceiro. Depois que o roteador recebe o quadro de teste, ele inicia a troca XID. O roteador coloca em cache o Campo de Informações de Roteamento (RIF) para esta sessão, que você pode verificar com o comando **show rif**. Como este é um PU2.0, o roteador envia um XID do tipo 2 do formato 0 para o host após a resposta ao XID nula.

SDLLC: 0 xid(null), 4000.1111.1111 4000.3174.11c6 4 4 [1000.14D3.0641.0051.12C2.0194.01F1.02C0]
SDLLC: NET UP WAIT recv FORWARD XID P/F(BF) 4000.3174.11c6 c000.1111.1111 04 05
-> Seriall C6
SDLLC: 0 xid(0T2), 4000.1111.1111 4000.3174.11c6 4 4 [1000.14D3.0641.0051.12C2.0194.01F1.02C0]
SDLLC: NET UP WAIT recv FORWARD SABME P/F(7F) 4000.3174.11c6 c000.1111.1111 04 04
-> Seriall C6
SDLLC: SABME for Seriall C6 in NET UP WAIT
%SDLLC-5-ACT_LINK: SDLLC: Seriall LINK address C6 ACTIVATED: Net connect
SDLLC STATE: Seriall C6 NET UP WAIT -> CONNECT

Após a troca de XID, o roteador recebe o SABME (Set Asynchronous Balanced Mode Extended) do host. Isso finaliza o procedimento de inicialização e o roteador responde com um UA ao host. Agora, o estado da linha SDLC muda de USBUSY para CONNECT, e os I-frames podem passar pelo roteador.

SDLC_STATE: (5235944) Serial1 C6 USBUSY
 -> CONNECT
Serial1 SDLC output C611
Serial1 SDLC input C611
s4f#

Tradução de mídia DLSw

O DLSw oferece um grande avanço para a tradução de mídia porque suporta PU2.1. Isso permite que ele tenha conversão de SDLLC para LLC2 para controladores, como o 5494 e o 5394 (com opção de atualização para PU2.1 - IBM RPQ 8Q0775) para AS/400s. Isso remove a necessidade de STUN e linhas AS/400 multiponto inválidas.

Os parâmetros de configuração para tradução de mídia DLSw são um pouco diferentes dos

parâmetros SDLLC. Há um comando DLSw adicionado, o restante são comandos SDLC. Conclua estes passos para configurar a tradução de mídia DLSw:

- 1. Emita o comando **encapsulation sdlc** para alterar o encapsulamento serial para SDLC.Como você vai encerrar a linha SDLC no roteador, o roteador deve atuar como primário para fins de pesquisa. Isso é diferente do STUN porque o principal será o HOST ou o AS/400.
- 2. Emita o comando **sdlc role primary** para alterar a função do roteador para primary na linha SDLC.
- Emita o comando sdlc address xx para configurar o endereço de pesquisa do SDLC.Éaqui que o DLSw difere do SDLLC. No SDLLC, você especifica comandos com a palavra-chave sdllc. No DLSw, especifique comandos com a palavra-chave sdlc.
- 4. Emita o comando sdlc vmac xxxx.xxx00 para configurar o endereço MAC virtual para o controlador SDLC.Esse parâmetro informa ao roteador o endereço MAC virtual desse controlador SDLC no ambiente LLC2. Lembre-se de deixar o último byte definido como 00 porque o endereço de pesquisa é adicionado ali (endereço sdlc).
- 5. Emita o comando sdlc xid nn xxxxxx para configurar o XID para esta PU 2.0.Neste comando, nn é o endereço de pesquisa da controladora e xxxxxxx é o XID para esta PU2.0 (o IDBLOCK e o IDNUM que é codificado no nó principal do switch em VTAM).Observação: se você tem uma PU2.1, há negociação de XID. Assim, o comando muda.
- 6. Emita o comando **sdlc xid nn xid-poll** para configurar o XID para esta PU 2.1.Neste comando, *nn* é o endereço de pesquisa da estação.
- 7. Emita o comando sdic partner xxxx.xxxx nn para configurar o endereço MAC do parceiro do roteador.Nesse comando, nn é o endereço de pesquisa do controlador em questão. É importante especificar o endereço do controlador, pois em linhas multiponto pode haver um controlador direcionado para um host e outro controlador direcionado para um host diferente.
- 8. Emita o comando sdic disw nn para configurar DLSw para o controlador específico.Neste comando, nn é o endereço de pesquisa da controladora ou controladoras no multidrop. Esse comando permite especificar vários endereços de pesquisa em um comando.Nota: Cuidado com o bug #CSCdi75481. Consulte o Bug Toolkit (somente clientes registrados) para obter mais informações. Se o comando sdic disw nn não for removido antes de alterar o endereço SDLC do roteador, o código CLS não poderá comunicar corretamente DLSw com a interface SDLC. Isso faz com que a interface se comporte como se nada tivesse sido configurado. Este bug foi corrigido no Cisco IOS® Software Release 11.1(8.1) 11.1(8.1)AA01(01.03) 11.1(8.1)AA01(01.02) e mais recente.

Um exemplo de configuração para um controlador DLSw SDLC PU2.0 é exibido.

	dlsw local-peer peer-id 1.1.2.1		
source-bridge ring-group	dlsw remote-peer 0 tcp 1.1.1.1		
100	!		
dlsw local-peer peer-id	interface loopback 0		
1.1.1.1	ip address 1.1.2.1		
dlsw remote-peer 0 tcp	!		
1.1.2.1	interface serial 0		
!	ip address 1.1.10.2		
interface serial 0	255.255.255.0		
ip address 1.1.10.1	!		
255.255.255.0	interface serial 1		
!	no ip address		
interface tokenring 0	encapsulation sdlc		
ip address 1.1.1.1	sdlc role primary		
255.255.255.0	sdlc vmac 4000.3174.0000		
ring-speed 16	sdlc address cl		
source-bridge 1 1 100	sdlc xid c1 01767890		
source-bridge spanning	sdlc partner 4000.3745.0001 c1		
	sdlc dlsw c1		

Ao codificar um multidrop, lembre-se de que PU2.1s é mais inteligente e tem mais informações para trocar do que um dispositivo PU2.0 normal. Isso é importante ao configurar um ambiente multidrop, pois você precisa codificar a linha como primária para o dispositivo PU2.0. Você também precisa adicionar o **xid-poll** para o endereço SDLC do dispositivo PU2.1 para que o código entenda o que fazer com cada um dos controladores. Este é um exemplo da configuração.

Рарауа	Mofongo
<pre>source-bridge ring- group 100 dlsw local-peer peer-id 1.1.1.1 dlsw remote-peer 0 tcp 1.1.2.1 ! interface serial 0 ip address 1.1.10.1 255.255.255.0 ! interface tokenring 0 ip address 1.1.1.1 255.255.255.0 ring-speed 16 source-bridge 1 1 100 source-bridge spanning</pre>	<pre>dlsw local-peer peer-id 1.1.2.1 dlsw remote-peer 0 tcp 1.1.1.1 ! interface loopback 0 ip address 1.1.2.1 ! interface serial 0 ip address 1.1.10.2 255.255.255.0 ! interface serial 1 no ip address encapsulation sdlc sdlc role primary sdlc vmac 4000.3174.0000 sdlc address c1 xid-pol1 sdlc partner 4000.9404.0001 c1 sdlc address c2 01767890 sdlc partner 4000.9404.0001 c2 sdlc dlsw c1 c2</pre>

comandos show

Consulte <u>Data-Link Switching Plus</u> para obter mais informações sobre os comandos show usados para tradução de mídia DLSw.

Depurando pacotes SDLC durante DLSw/SDLC para PU2.1

%LINK-3-UPDOWN: Interface Serial2, changed state to up A primeira coisa a ocorrer é um XID, ou BF para o endereço de broadcast SDLC de FF.

Serial2 SDLC output FFBF

Em seguida, um XID é recebido do 5494. Este é um formato XID 2 tipo 3, que é exibido nesta saída do comando **debug sdic packet:**

 Serial2 SDLC input

 0046C930: DDBF3244
 073000DD
 0000B084
 0000000
d....

 0046C940: 0000001
 0B000004
 09000000
 00070010
d....

 0046C950: 17001611
 01130012
 F5F4F9F4
 F0F0F2F0
54940020

 0046C960:
 F0F0F0F0
 F0F0F0F0
 0E0CF4D5
 C5E3C14B
 0000000..4NETA.

 0046C970:
 C3D7F5F4
 F9F4
 CF5494
 CF5494

Estas são explicações de vários campos desse comando:

- 073000DD Este campo é o número de ID e ID do bloco configurado no 5494. O ID do bloco e o número da ID são conhecidos como XID e enviados pelo 5494 ao peer durante a negociação da sessão.
- NETA Este campo é o Identificador de Rede Ponto-a-Ponto Avançado (APPN Advanced Peer-to-Peer Networking) que está sendo usado. Normalmente, esse campo corresponde ao NETID configurado no peer. Nesse caso, o peer é um AS/400.
- CP5494 Este campo é o nome do Ponto de Controle (CP) do 5494.
- DD Este campo é o endereço SDLC.

Em seguida, o XID é recebido do AS/400:

```
Serial2 SDLC output
004BC070: FFBF 324C0564 52530000 000A0800
                                              . . . < . . . . . . . . . .
004BC080: 0000000 00010B30 0005BA00 0000007 .....
004BC090: 000E0DF4 D5C5E3C1 4BD9E3D7 F4F0F0C1
                                            ...4NETA.RTP400A
004BC0A0: 1017F116 11011300 11F9F4F0 F4C6F2F5
                                            ..1.....9404F25
004BC0B0: F1F0F0F0 F4F5F2F5 F3460505 80000000 100045253.....
004BC0C0:
Serial2 SDLC input
0046C270:
                          DDBF3244 073000DD
0046C280: 0000B084 0000000 0000001 0B000004 ...d.....
0046C290: 09000000 00070010 17001611 01130012
                                            . . . . . . . . . . . . . . . .
0046C2A0: F5F4F9F4 F0F0F2F0 F0F0F0F0 F0F0F0F0 549400200000000
                                          ..4NETA.CP5494
0046C2B0: 0E0CF4D5 C5E3C14B C3D7F5F4 F9F4
Serial2 SDLC output
004C0B10: FFBF 324C0564 52530000 00F6C800
                                              ...<...бН.
004C0B20: 00000080 15010B10 0005BA00 00000007 .....
```

```
004C0B30: 000E0DF4 D5C5E3C1 4BD9E3D7 F4F0F0C1
                                             ...4NETA.RTP400A
004C0B40: 1017F116 11011300 11F9F4F0 F4C6F2F5
                                             ..1.....9404F25
004C0B50: F1F0F0F0 F4F5F2F5 F3460505 80150000 100045253.....
004C0B60:
Serial2 SDLC input
0046BBC0: DDBF3244 073000DD 0000B084 0000000
                                             ....d...
0046BBD0: 0000001 0B000004 09000000 00070010
                                             . . . . . . . . . . . . . . . . .
0046BBE0: 17001611 01130012 F5F4F9F4 F0F0F2F0
                                              0046BBF0: F0F0F0F0 F0F0F0F0 0E0CF4D5 C5E3C14B 00000000..4NETA.
0046BC00: C3D7F5F4 F9F4
                                             CP5494
```

- 05645253 Este campo é o ID do bloco e o número de ID do AS/400.
- RTP400A Este campo é o nome CP do AS/400. O nome do CP é encontrado no arquivo Display Network Attributes (DSPNETA) no AS/400.

Em seguida, o SNRM (93) e o UA (73) são exibidos na linha. Antes do SNRM, o roteador sempre usa o endereço de broadcast. A partir desse ponto, o roteador sempre usa o endereço de pesquisa real de DD.

Serial2	SDLC	output	DD93
Serial2	SDLC	input	DD73
Serial2	SDLC	output	DD11
Serial2	SDLC	input	DD11

Nesse ponto, a conexão é suspensa devido ao estado fixo do RR (Reciever Ready) entre o roteador e o 5494.

Observação: se o roteador no qual você precisa executar o debug tiver outras interfaces SDLC e você não estiver em buffer de registro, o roteador poderá suspender. Entender quando você pode executar uma depuração no terminal versus o registro vem com experiência. Se você não tiver certeza, use sempre o logging buffered e o comando **show log** para exibir as depurações de SDLC

Desligue a controladora no AS/400. Isso permite ver DISK (53) e UA (73) que resultam no lado SDLC da sessão.

Serial2 SDLC outputDD53Serial2 SDLC inputDD73

Exemplo de tradução de mídia DLSw

Depois que a interface é ativada e ativada, o roteador inicia o processo determinando a localização do controlador remoto.

CSM: Received CLSI Msg : ID_STN.Ind dlen: 46 from Serial4 CSM: smac 4000.5494.00dd, dmac 4000.9404.0001, ssap 4 , dsap 4 %DLSWC-3-RECVSSP: SSP OP = 4(ICR) -explorer from peer 10.17.2.198(2065) DLSw: new_ckt_from_clsi(): Serial4 4000.5494.00dd:4->4000.9404.0001:4

Depois de receber o quadro ICR, o DLSw inicia a máquina de estado finito (FSM) para esta sessão. Isso é realizado pelas mensagens **REQ_OPNSTN.Req** e **REQ_OPNSTN.Cfm** que estão entre DLSw e Cisco Link Services Interface (CLSI).

DLSw: START-FSM (488636): event:DLC-Id state:DISCONNECTED DLSw: core: dlsw_action_a() DISP Sent : CLSI Msg : **REQ_OPNSTN.Req** dlen: 106 DLSw: END-FSM (488636): state:DISCONNECTED->LOCAL_RESOLVE

DLSW Received-ctlQ : CLSI Msg : REQ_OPNSTN.Cfm CLS_OK dlen: 106 DLSw: START-FSM (488636): event:DLC-ReqOpnStn.Cnf state:LOCAL_RESOLVE DLSw: core: dlsw_action_b() CORE: Setting lf size to FF

Após a conversação com CLSI, o DLSw envia quadros CUR de inicialização da sessão para o roteador remoto. Isso ocorre somente entre os dois roteadores.

%DLSWC-3-SENDSSP: SSP OP = 3(CUR) to peer 10.17.2.198(2065) success DLSw: END-FSM (488636): state:LOCAL_RESOLVE->CKT_START %DLSWC-3-RECVSSP: SSP OP = 4(ICR) from peer 10.17.2.198(2065) DLSw: 488636 recv FCI 0 - s:0 so:0 r:0 ro:0 DLSw: recv RWO DLSw: recv RWO DLSw: START-FSM (488636): event:WAN-ICR state:CKT_START DLSw: core: dlsw_action_e() DLSw: sent RWO DLSw: 488636 sent FCI 80 on ACK - s:20 so:1 r:20 ro:1 %DLSWC-3-SENDSSP: SSP OP = 5(ACK) to peer 10.17.2.198(2065) success DLSw: END-FSM (488636): state:CKT_START->CKT_ESTABLISHED

Quando o circuito é estabelecido, o roteador envia o XID que foi armazenado e inicia a troca de XID. É importante entender onde estão os XIDs. Neste exemplo, o Data-Link Control (DLC)-Id significa que o XID veio da estação DLC local e o WAN-XID veio do roteador remoto, ou estação remota.

DLSw: START-FSM (488636): event:DLC-Id state:CKT_ESTABLISHED DLSw: core: dlsw_action_f() DLSw: 488636 sent FCA on XID %DLSWC-3-SENDSSP: SSP OP = 7(XID) to peer 10.17.2.198(2065) success DLSw: END-FSM (488636): state:CKT_ESTABLISHED->CKT_ESTABLISHED %DLSWC-3-RECVSSP: SSP OP = 7(XID) from peer 10.17.2.198(2065) DLSw: 488636 recv FCA on XID - s:20 so:0 r:20 ro:0 DLSw: START-FSM (488636): event:WAN-XID state:CKT_ESTABLISHED DLSw: core: dlsw_action_g() DISP Sent : CLSI Msg : ID.Rsp dlen: 12 DLSw: END-FSM (488636): state:CKT_ESTABLISHED->CKT_ESTABLISHED *DLSWC-3-RECVSSP: SSP OP = 7(XID) from peer 10.17.2.198(2065) DLSw: START-FSM (488636): event:WAN-XID state:CKT_ESTABLISHED DLSw: core: dlsw_action_g() DISP Sent : CLSI Msg : ID.Req dlen: 88 DLSw: END-FSM (488636): state:CKT_ESTABLISHED->CKT_ESTABLISHED

```
DLSW Received-ctlQ : CLSI Msg : ID.Ind dlen: 82
```

DLSw: START-FSM (488636): event:DLC-Id state:CKT_ESTABLISHED
DLSw: core: dlsw_action_f()
%DLSWC-3-SENDSSP: SSP OP = 7(XID) to peer 10.17.2.198(2065) success
DLSw: END-FSM (488636): state:CKT_ESTABLISHED->CKT_ESTABLISHED

%DLSWC-3-RECVSSP: SSP OP = 7(XID) from peer 10.17.2.198(2065) DLSw: START-FSM (488636): event:WAN-XID state:CKT_ESTABLISHED DLSw: core: dlsw_action_g() DISP Sent : CLSI Msg : ID.Rsp dlen: 88 DLSw: END-FSM (488636): state:CKT_ESTABLISHED->CKT_ESTABLISHED

DLSW Received-ctlQ : CLSI Msg : ID.Ind dlen: 82 DLSw: START-FSM (488636): event:DLC-Id state:CKT_ESTABLISHED DLSw: core: dlsw_action_f() %DLSWC-3-SENDSSP: SSP OP = 7(XID) to peer 10.17.2.198(2065) success DLSw: END-FSM (488636): state:CKT_ESTABLISHED->CKT_ESTABLISHED

%DLSWC-3-RECVSSP: SSP OP = 7(XID) from peer 10.17.2.198(2065) DLSw: START-FSM (488636): event:WAN-XID state:CKT_ESTABLISHED DLSw: core: dlsw_action_g() DISP Sent : CLSI Msg : ID.Rsp dlen: 88 DLSw: END-FSM (488636): state:CKT_ESTABLISHED->CKT_ESTABLISHED

DLSW Received-ctlQ : CLSI Msg : ID.Ind dlen: 82 DLSw: START-FSM (488636): event:DLC-Id state:CKT_ESTABLISHED DLSw: core: dlsw_action_f() %DLSWC-3-SENDSSP: SSP OP = 7(XID) to peer 10.17.2.198(2065) success DLSw: END-FSM (488636): state:CKT_ESTABLISHED->CKT_ESTABLISHED

O roteador recebe o **CONQ** do AS/400 (SABME). Isso é traduzido para a linha serial como um SNRM. Em seguida, o roteador aguarda o UA na linha serial (**CONNECT.Cfm**) e envia o **CONR** para o outro lado. Isso altera o estado da sessão para **CONNECTED**.

%DLSWC-3-RECVSSP: SSP OP = 8(CONQ) from peer 10.17.2.198(2065) DLSw: START-FSM (488636): event:WAN-CONQ state:CKT_ESTABLISHED DLSw: core: dlsw_action_i() DISP Sent : CLSI Msg : CONNECT.Req dlen: 16 DLSw: END-FSM (488636): state:CKT_ESTABLISHED->CONTACT_PENDING

DLSW Received-ctlQ : CLSI Msg : CONNECT.Cfm CLS_OK dlen: 8 DLSw: START-FSM (488636): event:DLC-Connect.Cnf state:CONTACT_PENDING DLSw: core: dlsw_action_j() %DLSWC-3-SENDSSP: SSP OP = 9(CONR) to peer 10.17.2.198(2065) success DISP Sent : CLSI Msg : FLOW.Req dlen: 0 DLSw: END-FSM (488636): state:CONTACT_PENDING->CONNECTED

DLSw executando tradução de mídia reversa

Outra configuração comum é a **sdllc inversa**. Em SDLLC reverso, a estação primária é conectada por uma linha SDLC ao roteador. Isso é geralmente visto em ambientes de host quando os usuários desejam migrar o host para um anexo Token Ring. O SDLLC inverso altera a maneira como o DLSw lida com a linha SDLC porque geralmente não está claro se a PU remota está ativa ou não.

		3
5494	CISCO CIS	CO AS/400
test(c)	CUR	xid
test(r)	+ ICR	_ +
	CUR(CS)	
	ICR(CS)	
	_ ACK	-
	xid	
🔺 xid	×id	xid 🖕
SABME	CONQ	SNRM
UA	− ★ CONR	_
RR RR		SNRM
		UA ,
		RR
*	l-frames	· · · · · · · · · · · · · · · · · · ·

Primeiro, como o AS/400 é principal neste caso, ou definido para ser negociável na função, ele precisa iniciar a sessão. Quando o AS/400 envia o primeiro XID depois que a linha serial se torna operacional, o roteador inicia o processo de pesquisa do controlador remoto. Depois que o circuito é configurado, a negociação de XID pode começar na linha.

Quando a negociação XID é concluída, o AS/400 envia o SNRM ao roteador. Isso faz com que o roteador envie o CONQ e espera o CONR do roteador remoto. O roteador não pode responder com o UA até ver um SNRM e depois de receber o CONR. Em quase todas as versões do código, o roteador espera 30 segundos até que expire a sessão. Isso ocorre em relação ao recebimento de SNRMs do dispositivo primário quando o dispositivo primário recebe o CONR do host remoto.

No código mais recente do Cisco IOS 11.1, os padrões foram alterados para um minuto em vez de 30 segundos. No AS/400, esse tempo limite é chamado de **temporizador de resposta não produtiva** e o padrão é 32 segundos.

Tradução de mídia DLSw local

%SYS-5-CONFIG_I: Configured from console by console DLSW Received-ctlQ : CLSI Msg : ID_STN.Ind dlen: 46 CSM: Received CLSI Msg : ID_STN.Ind dlen: 46 from Serial2

A primeira coisa que você percebe no DLSw local é o XID do lado serial. Esse XID precisa ser armazenado até que o roteador envie os quadros/respostas de teste de LLC.

CSM: smac 4000.5494.00dd, dmac 4000.9404.0001, ssap 4 , dsap 4 DISP Sent : CLSI Msg : TEST_STN.Req dlen: 46 DISP Sent : CLSI Msg : TEST_STN.Req dlen: 46 CSM: Write to all peers not ok - PEER_NO_CONNECTIONS DLSW Received-ctlQ : CLSI Msg : TEST_STN.Ind dlen: 43 CSM: Received CLSI Msg : TEST_STN.Ind dlen: 43 from TokenRing0 CSM: smac c000.9404.0001, dmac 4000.5494.00dd, ssap 0 , dsap 4 Em seguida, a estação de teste sai do roteador e a resposta retorna do AS/400. Agora, o roteador pode criar o FSM local.

Observação: lembre-se de que esta é uma sessão local.

DLSw: csm_to_local(): Serial2-->TokenRing0 4000.5494.00dd:4->4000.9404.0001:4 DLSw: START-LFSM TokenRing0 (4000.9404.0001->4000.5494.00dd) event:ADMIN-START DLSw: LFSM-A: Opening DLC station DISP Sent : CLSI Msg : REQ_OPNSTN.Req dlen: 106 DLSw: END-LFSM (4000.9404.0001->4000.5494.00dd): state:DISCONNECTED ->OPN_STN_PEND DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:ADMIN-START DLSw: LFSM-A: Opening DLC station DISP Sent : CLSI Msg : REQ_OPNSTN.Req dlen: 106 DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:DISCONNECTED ->OPN_STN_PEND DLSW: END-LFSM (4000.5494.00dd->4000.9404.0001): state:DISCONNECTED ->OPN_STN_PEND DLSW Received-ctlQ : CLSI Msg : REQ_OPNSTN.Cfm CLS_OK dlen: 106 DLSw: START-LFSM TokenRing0 (4000.9404.0001->4000.5494.00dd) event:DLC-ReqOpnStn.Cnf DLSw: LFSM-B: DLC station opened DLSw: END-LFSM (4000.9404.0001->4000.5494.00dd): state:OPN_STN_PEND ->ESTABLISHED

DLSW Received-ctlQ : CLSI Msg : **REQ_OPNSTN.Cfm** CLS_OK dlen: 106 DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:DLC-ReqOpnStn.Cnf DLSw: LFSM-B: DLC station opened DLSw: processing saved clsi message

Depois que o roteador confirmar localmente que o FSM está pronto, ele pode enviar o XID para o parceiro. Neste exemplo, o parceiro é o AS/400 (**ID.Reg**).

DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:DLC-Id DLSw: LFSM-X: forward XID to partner DISP Sent : CLSI Msg : **ID.Req** dlen: 12 DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:ESTABLISHED ->ESTABLISHED DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:OPN_STN_PEND ->ESTABLISHED DLSW Received-ctlQ : CLSI Msg : ID.Cfm CLS_OK dlen: 32 DLSw: START-LFSM TokenRingO (4000.9404.0001->4000.5494.00dd) event:DLC-Id DLSw: LFSM-X: forward XID to partner DISP Sent : CLSI Msg : **ID.Rsp** dlen: 12 DLSw: END-LFSM (4000.9404.0001->4000.5494.00dd): state:ESTABLISHED ->ESTABLISHED Em seguida, um XID é recebido do Token Ring. O ID.Ind tem um comprimento de 108. O roteador encaminha esse XID para o parceiro neste cenário, que é a linha SDLC. Isso é indicado pelo **ID.Req** que foi enviado. Cada vez que o roteador recebe um pacote, ele precisa iniciar a máquina linear de estado finito (LFSM). Essa é a chave para entender essa depuração, pois ela informa onde ela começa e quais pontos ela está indo.

DLSW Received-ctlQ : CLSI Msg : **ID.Ind** dlen: 108 DLSW: START-LFSM **TokenRing0** (**4000.9404.0001->4000.5494.00dd**) event:DLC-Id DLSw: LFSM-X: forward XID to partner DISP Sent : CLSI Msg : **ID.Req** dlen: 88 DLSw: END-LFSM (4000.9404.0001->4000.5494.00dd): state:ESTABLISHED ->ESTABLISHED

Em seguida, a resposta XID é recebida da linha serial e é encaminhada ao parceiro (a estação Token Ring neste exemplo). Isso continua até que a troca XID seja concluída para este dispositivo PU2.1.

DLSW Received-ctlQ : CLSI Msg : **ID.Ind** dlen: 82 DLSW: START-LFSM Serial2 (**4000.5494.00dd->4000.9404.0001**) event:DLC-Id DLSW: LFSM-X: forward XID to partner DISP Sent : CLSI Msg : ID.Rsp dlen: 80 DLSW: END-LFSM (4000.5494.00dd->4000.9404.0001): state:ESTABLISHED ->ESTABLISHED

DLSW Received-ctlQ : CLSI Msg : **ID.Ind** dlen: 108 DLSW: START-LFSM TokenRing0 (**4000.9404.0001->4000.5494.00dd**) event:DLC-Id DLSw: LFSM-X: forward XID to partner DISP Sent : CLSI Msg : **ID.Rsp** dlen: 88 DLSw: END-LFSM (4000.9404.0001->4000.5494.00dd): state:ESTABLISHED ->ESTABLISHED

DLSW Received-ctlQ : CLSI Msg : ID.Ind dlen: 82 DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:DLC-Id DLSw: LFSM-X: forward XID to partner DISP Sent : CLSI Msg : **ID.Rsp** dlen: 80 DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:ESTABLISHED ->ESTABLISHED

DLSW Received-ctlQ : CLSI Msg : ID.Ind dlen: 108 DLSw: START-LFSM TokenRing0 (4000.9404.0001->4000.5494.00dd) event:DLC-Id DLSw: LFSM-X: forward XID to partner DISP Sent : CLSI Msg : **ID.Rsp** dlen: 88 DLSw: END-LFSM (4000.9404.0001->4000.5494.00dd): state:ESTABLISHED ->ESTABLISHED

%LINK-3-UPDOWN: Interface Serial2, changed state to up DLSW Received-ctlQ : CLSI Msg : ID.Ind dlen: 82 DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:DLC-Id DLSw: LFSM-X: forward XID to partner DISP Sent : CLSI Msg : ID.Rsp dlen: 80 DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:ESTABLISHED ->ESTABLISHED

Após a troca XID, o roteador recebe um SABME do AS/400 através do **CONNECT.Ind**. Isso instrui o roteador a enviar um CONNECT.Req à linha de SDLC, que é o SNRM. Em seguida, uma mensagem **CONNECT.Cfm** (UA) é recebida da linha serial, o que faz com que o código DLSw envie um **CONNECT.Rsp** (UA) ao AS/400.

DLSW Received-ctlQ : CLSI Msg : CONNECT.Ind dlen: 8 DLSw: START-LFSM TokenRing0 (4000.9404.0001->4000.5494.00dd) event:DLC-Connect.Ind DLSw: LFSM-C: starting local partner DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:ADMIN-CONN DLSw: LFSM-D: sending connect request to station DISP Sent : CLSI Msg : CONNECT.Req dlen: 16 DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:ESTABLISHED ->CONN_OUT_PEND DLSW Received-ctlQ : CLSI Msg : CONNECT.Cfm CLS_OK dlen: 8 DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:DLC-Connect.Cnf DLSw: LFSM-E: station accepted the connection DLSw: START-LFSM TokenRing0 (4000.9404.0001->4000.5494.00dd) event:ADMIN-CONN DLSw: LFSM-F: accept incoming connection DISP Sent : CLSI Msg : CONNECT.Rsp dlen: 20 DLSw: END-LFSM (4000.9404.0001->4000.5494.00dd): state:CONN_IN_PEND ->CONNECTED

DISP Sent : CLSI Msg : FLOW.Req dlen: 0 DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:CONN_OUT_PEND->CONNECTED

A sessão quando o controlador (SDLC) é desligado é exibida.

%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2, changed state to down %LINK-5-CHANGED: Interface Serial2, changed state to administratively down DLSW Received-ctlQ : CLSI Msg : DISCONNECT.Ind dlen: 8 DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:DLC-Disc.Ind DLSw: LFSM-Q: acknowledge disconnect DISP Sent : CLSI Msg : DISCONNECT.Rsp dlen: 4 Em seguida, o roteador envia um DISCO ao AS/400 (DISCONNECT.Rsp). Em seguida, ele

DLSw: START-LFSM TokenRing0 (4000.9404.0001->4000.5494.00dd) event:ADMIN-STOP DLSw: LFSM-Z: close dlc station request DISP Sent : CLSI Msg : CLOSE_STN.Req dlen: 4 DLSw: END-LFSM (4000.9404.0001->4000.5494.00dd): state:ESTABLISHED ->CLOSE_PEND

DISP Sent : CLSI Msg : CLOSE_STN.Req dlen: 4 DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:ESTABLISHED ->CLOSE_PEND

DLSW Received-ctlQ : CLSI Msg : CLOSE_STN.Cfm CLS_OK dlen: 8 DLSw: START-LFSM TokenRing0 (4000.9404.0001->4000.5494.00dd) event:DLC-CloseStn.Cnf DLSw: LFSM-Y: driving partner to close circuit DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:ADMIN-STOP DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:CLOSE_PEND ->CLOSE_PEND

DLSw: END-LFSM (4000.9404.0001->4000.5494.00dd): state:CLOSE_PEND ->DISCONNECTED

DLSW Received-ctlQ : CLSI Msg : **DISCONNECT.Ind** dlen: 8 DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:DLC-Disc.Ind DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:CLOSE_PEND ->CLOSE_PEND

DLSW Received-ctlQ : CLSI Msg : CLOSE_STN.Cfm CLS_OK dlen: 8 DLSw: START-LFSM Serial2 (4000.5494.00dd->4000.9404.0001) event:DLC-CloseStn.Cnf DLSw: LFSM-Y: removing local switch entity DLSw: END-LFSM (4000.5494.00dd->4000.9404.0001): state:CLOSE_PEND ->DISCONNECTED Depois que o roteador recebe o DISCONNECT.Ind (UA) do AS/400, ele termina de limpar a sessão e move-se para um estado de desconexão.

Informações Relacionadas

começa a derrubar o circuito local.

- Tecnologias IBM
- Suporte Técnico e Documentação Cisco Systems