Backup e restauração do Prime Infrastructure Gen1 Appliance com USB Stick

Contents

Introduction Problema Solução

Introduction

Este documento descreve como fazer um backup externo do Prime Infrastructure (PI) Gen 1 Appliance com o uso de uma porta USB do Appliance e vice-versa.

Problema

Em muitos cenários de clientes, o uso do File Trasfer Protocol/ Trivial File Transfer Protocol **(FTP/TFTP)** é restrito em seu data center e, portanto, é um grande desafio para o cliente mover o backup do PI para um ponto externo com a ajuda de qualquer servidor **FTP/TFTP**. Como o Appliance é um servidor baseado em Linux, é muito difícil mover o backup de qualquer outra forma para o ponto externo, pois pode haver a possibilidade de corromper o backup no momento da transferência incorreta.

Solução

Para superar essa situação, encontre uma solução alternativa para mover o backup do Prime Server para o USB Stick com o uso da porta USB do dispositivo. Outra vantagem é que ele é muito mais rápido e ajuda a reduzir o tempo necessário para copiar pelo FTP/TFTP/SFTP e será muito útil copiar grandes dados também.

Backup do equipamento IP Gen1 para USB

Etapa 1. Insira um pente USB.

Etapa 2. Criar um novo sistema de arquivos ext4 de partição suportado.

-bash-4.1# fdisk -1 n e l t 8e w -bash-4.1# partprobe -bash-4.1# mkfs.ext4 /dev/sdb1 -bash-4.1# mkdir /media/usb-drive/ -bash-4.1# mount -t ext4 /dev/sdb1 /media/usb-drive/ -bash-4.1# umount /media/usb-drive Etapa 3. Copie o backup do defaultRepo para o sistema de arquivos recém-montado.

Etapa 4. Valide o md5 do arquivo em ambos os lugares.

Backup de dispositivo USB para IP Gen1

Etapa 1. Faça login no PI.

pi/admin# Etapa 2. Navegue até **shell**.

pi/admin# shell Enter shell access password : Starting bash shell ... ade # ade # ade # ade # sudo su --bash-4.1# Etapa 3. Exibir todas as partições de disco no PI.

-bash-4.1# fdisk -1

Disk /dev/sda: 897.0 GB, 896998047744 bytes
255 heads, 63 sectors/track, 109053 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000591be

Device BootStartEndBlocksIdSystem/dev/sda1 *16451200083LinuxPartition 1 does not end on cylinder boundary./dev/sda2647710240083LinuxPartition 2 does not end on cylinder boundary./dev/sda3771090548753592328eLinux LVM

Disk /dev/mapper/smosvg-rootvol: 4194 MB, 4194304000 bytes
255 heads, 63 sectors/track, 509 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0000000

Disk /dev/mapper/smosvg-swapvol: 16.8 GB, 16777216000 bytes
255 heads, 63 sectors/track, 2039 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0000000

Disk /dev/mapper/smosvg-tmpvol: 2113 MB, 2113929216 bytes
255 heads, 63 sectors/track, 257 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0000000

Disk /dev/mapper/smosvg-usrvol: 7348 MB, 7348420608 bytes
255 heads, 63 sectors/track, 893 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0000000

Disk /dev/mapper/smosvg-varvol: 4194 MB, 4194304000 bytes
255 heads, 63 sectors/track, 509 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0000000

Disk /dev/mapper/smosvg-optvol: 716.3 GB, 716252905472 bytes
255 heads, 63 sectors/track, 87079 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0000000

Disk /dev/mapper/smosvg-home: 134 MB, 134217728 bytes
255 heads, 63 sectors/track, 16 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0000000

Disk /dev/mapper/smosvg-recvol: 134 MB, 134217728 bytes
255 heads, 63 sectors/track, 16 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0000000

Disk /dev/mapper/smosvg-altrootvol: 134 MB, 134217728 bytes
255 heads, 63 sectors/track, 16 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0000000

Disk /dev/mapper/smosvg-localdiskvol: 134.6 GB, 134553272320 bytes
255 heads, 63 sectors/track, 16358 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x0000000

Disk /dev/mapper/smosvg-storeddatavol: 10.5 GB, 10502537216 bytes 255 heads, 63 sectors/track, 1276 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0000000

Disk /dev/sdb: 62.1 GB, 62075699200 bytes
255 heads, 63 sectors/track, 7546 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0xa5fe72c5

Device Boot Start End Blocks Id System /dev/sdb1 1 7546 60613213+ 8e Linux LVM Etapa 4. Crie um novo diretório e monte-o.

-bash-4.1# mkdir /media/usb-drive/ -bash-4.1# mount -t ext4 /dev/sdb1 /media/usb-drive/ -bash-4.1# ls -lv total 60 -rw------. 1 root root 8494 Aug 24 2018 anaconda-ks.cfg drwxr-xr-x. 2 root root 4096 Aug 24 2018 bin -rw-r--r-. 1 root root 18977 Aug 24 2018 install.log -rw-r--r-. 1 root root 5646 Aug 24 2018 install.log.syslog -rw-r--r-. 1 root root 5646 Aug 24 2018 iso.ks.cfg -rw-r----. 1 root root 164 Aug 24 2018 ks-post.log -rw-rw-r---. 1 root root 381 Aug 24 2018 ks-post.log -rw-rw-r---. 1 root root 120 Aug 23 17:47 test.log -bash-4.1# cd /media/usb-drive/

-bash-4.1# pwd

/media/usb-drive Etapa 5. Antes de copiar o backup, verifique o **md5** do backup do USB.

-bash-4.1# ls -lv total 21197320 -rw-r--r-. 1 root root 21706033973 Jun 28 14:57 pi-180419-1332__VER3.1.0.0.132_BKSZ204G_CPU16_MEM3G_RAM15G_SWAP15G_APP_CK1589549125.tar.gpg 16384 Jun 28 14:29 lost+found drwx----. 2 root root -bash-4.1# -bash-4.1# -bash-4.1# md5sum pi-180419-1332__VER3.1.0.0.132_BKSZ204G_CPU16_MEM3G_RAM15G_SWAP15G_APP_CK1589549125.tar.gpg 44daa932e7ca10fafe480302f7a17b6a pi-180419-1332__VER3.1.0.0.132_BKSZ204G_CPU16_MEM3G_RAM15G_SWAP15G_APP_CK1589549125.tar.gpg -bash-4.1# -bash-4.1# Etapa 6. Copie o backup na pasta /localdisk/defaultRepo. -bash-4.1# cp pi-180419-1332__VER3.1.0.0.132_BKSZ204G_CPU16_MEM3G_RAM15G_SWAP15G_APP_CK1589549125.tar.gpg /localdisk/defaultRepo/ -bash-4.1# -bash-4.1# -bash-4.1# cd /localdisk/defaultRepo/ -bash-4.1# ls -lv total 21218032 -rw-r--r-. 1 root root 21706033973 Aug 23 18:56 pi-180419-1332__VER3.1.0.0.132_BKSZ204G_CPU16_MEM3G_RAM15G_SWAP15G_APP_CK1589549125.tar.gpg -bash-4.1# -bash-4.1# Passo 7. Verifique o md5 do backup copiado com o md5 anterior.

44daa932e7ca10fafe480302f7a17b6a pi-180419-1332__VER3.1.0.0.132_BKSZ204G_CPU16_MEM3G_RAM15G_SWAP15G_APP_CK1589549125.tar.gpg

1332__VER3.1.0.0.132_BKSZ204G_CPU16_MEM3G_RAM15G_SWAP15G_APP_CK1589549125.tar.gpg

-bash-4.1#

-bash-4.1# md5sum pi-180419-

-bash-4.1# Etapa 8. Desmonte o diretório.

-bash-4.1# umount /media/usb-drive

-bash-4.1#

-bash-4.1#

-bash-4.1#