빠른 시작 가이드 - 다양한 SD-WAN 문제에 대한 데이터 수집

목차

소개 사전 요구 사항 요구 사항 사용되는 구성 요소 기본 정보 요청됨 vManage 느림/느림 API 실패/문제 DPI(Deep Packet Inspection) 통계/느림 템플릿 푸시 실패 클러스터 관련 문제 에지(vEdge/cEdge) 장치와 컨트롤러 간에 연결되지 않는 제어 연결 에지 디바이스와 컨트롤러 간의 연결 플랩 제어 에지 디바이스 간에 BFD(Bidirectional Forwarding Detection) 세션이 형성되지 않거나 플래핑되지 않음 디바이스 충돌 사이트 간의 애플리케이션/네트워크 성능 저하 또는 실패

소개

이 문서에서는 문제 해결 속도 및/또는 문제 해결 속도를 개선하기 위해 TAC 케이스를 열기 전에 미 리 수집해야 하는 관련 데이터와 함께 몇 가지 SD-WAN 문제에 대해 설명합니다.이 문서는 두 가지 주요 기술 섹션으로 구분됩니다.vManage 및 Edge 라우터관련 출력 및 명령 구문은 해당 디바이스 에 따라 제공됩니다.

사전 요구 사항

요구 사항

다음 주제에 대한 지식을 보유하고 있으면 유용합니다.

- Cisco의 SDWAN 아키텍처
- vManage 컨트롤러와 cEdge(IOS-XE SD-WAN 라우터) 및 vEdge 디바이스(ViptelaOS 라우터)를 비롯한 솔루션에 대한 일반적인 이해

사용되는 구성 요소

이 문서는 특정 소프트웨어 및 하드웨어 버전으로 한정되지 않습니다.

이 문서의 정보는 특정 랩 환경의 디바이스를 토대로 작성되었습니다.이 문서에 사용된 모든 디바 이스는 초기화된(기본) 컨피그레이션으로 시작되었습니다.네트워크가 작동 중인 경우 모든 명령의 잠재적인 영향을 이해해야 합니다.

기본 정보 요청됨

- 네트워크 및 사용자에게 미치는 문제와 그 영향에 대해 설명하십시오. 예상 동작을 설명합니다 .관찰된 동작에 대해 자세히 설명합니다.가능한 경우 주소를 지정하여 토폴로지 다이어그램을 준비합니다(수동 그린 경우에도).
- 언제 문제가 시작되었습니까? 문제가 처음 발견되거나 발견된 날짜와 시간을 확인합니다.
- 문제의 잠재적인 트리거가 될 수 있는 것은 무엇입니까? 문제가 시작되기 전에 변경한 내용을 문서화합니다.문제가 시작되도록 트리거할 수 있는 특정 작업 또는 이벤트를 확인합니다.이 문 제가 다른 네트워크 이벤트 또는 작업과 관련이 있습니까?
- 문제의 빈도는 얼마입니까? 일회성 사건이었나요?그렇지 않으면 얼마나 자주 문제가 발생합니까?
- 해당 장치에 대한 정보 제공: 특정 장치가 영향을 받는 경우(무작위가 아님), 공통적인 사항은 무엇입니까?각 디바이스의 System-IP 및 Site-ID입니다.문제가 vManage 클러스터에 있는 경 우 노드 세부 정보를 제공합니다(클러스터의 모든 노드에서 동일하지 않은 경우).vManage GUI의 일반적인 문제에 대해서는 모든 스크린샷을 파일로 캡처하여 오류 메시지 또는 조사해 야 하는 기타 이상/사체를 표시합니다.
- TAC에서 원하는 결과와 우선 순위에 대한 정보를 제공합니다. 가능한 한 빨리 오류를 복구하시 겠습니까? 아니면 실패의 근본 원인을 파악하시겠습니까?

vManage

여기서 문제는 vManage에 대해 보고된 일반적인 문제 조건과 관리 **기술** 파일 외에 수집해야 하는 각 문제에 대한 유용한 출력입니다. 클라우드 호스티드 컨트롤러의 경우, TAC(Technical Assistance Center) 엔지니어가 이에 대한 명시적 동의를 제공하는 경우 Base Information Requested 섹션의 피드백에 따라 디바이스에 대한 필수 **관리자 기술** 출력을 수집할 수 있습니다.그 러나 여기에 설명된 단계에서 포함된 데이터가 문제 시간과 관련되는지 확인하기 위해 **admin-tech** 출력을 캡처하는 것이 좋습니다.문제가 지속되지 않는 경우 특히 그렇습니다. 즉, TAC가 참여할 때 문제가 사라질 수 있습니다. 온프레미스 컨트롤러의 경우 **관리자** 기술**을** 각 데이터 세트에 포함해 야 합니다.vManage 클러스터의 경우 클러스터의 각 노드 또는 영향을 받는 노드만 **admin-tech**를 캡처해야 합니다.

느림/느림

문제 보고서:vManage GUI 액세스 속도 저하, GUI 내에서 작업을 수행할 때의 지연 시간, vManage 내에서 나타나는 일반적인 느림 또는 장진 현상

1단계. 스레드 인쇄의 2-3개 인스턴스를 캡처하고 각 스레드 **인쇄** 파일의 이름을 각각 숫자 지정으 로 바꿉니다(파일 경로에서 vManage에 로그인하는 사용자 이름을 사용합니다). 예를 들면 다음과 같습니다.

vManage# request nms application-server jcmd thread-print | save /home/<username>/thread-print.1 2단계. vshell에 로그인하고 아래와 같이 vmstat를 실행합니다.

1. 실행된 API 호출

vManage# request nms application-server jcmd gc-class-histo | i io.undertow.server.protocol.http.HttpServerConnection 4단계.다음 세부 정보를 제공합니다.

3단계. 활성 HTTP 세션에 대한 세부 정보를 수집합니다.

vManage# request nms application-server jcmd thread-print | save /home/<username>/thread-print.1 <WAIT 5 SECONDS> vManage# request nms application-server jcmd thread-print | save /home/<username>/thread-print.2

Mem: 31Gi 24Gi 280Mi 60Mi 6.8Gi 6.9Gi Swap: 0B 0B 0B vManage:~\$ 2단계. 5초 간격의 스레드 인쇄 인스턴스를 캡처하고 각 **스레드 인쇄** 파일의 이름을 각 명령 실행 후 숫자 지정으로 바꿉니다(파일 경로에서 vManage에 로그인하는 사용자 이름을 사용합니다).

1단계. 사용 가능한 메모리를 확인합니다.

total used free shared buff/cache available

문제 보고서:API 호출에서 데이터 또는 올바른 데이터를 반환하지 못함, 쿼리 실행 일반 문제

API 실패/문제

vManage:~\$ free -h

vManage# vshell

vManage# request nms application-server diagnostics vManage# request nms configuration-db diagnostics vManage# request nms messaging-server diagnostics vManage# request nms coordination-server diagnostics vManage# request nms statistics-db diagnostics

vManage:~\$ free -h vManage:~\$ df -kh 4단계. 모든 NMS 서비스 진단을 캡처합니다.

vManage:~\$ top (press '1' to get CPU counts)

3단계. vshell에서 추가 세부 정보를 수집합니다.

```
vManage:~$ vmstat 1 10
procs -----memory------swap-- ----io-----system-- ----cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 316172 1242608 5867144 0 0 1 22 3 5 6 1 93 0 0
0 0 0 316692 1242608 5867336 0 0 0 8 2365 4136 6 1 93 0 0
0 0 0 316204 1242608 5867344 0 0 0 396 2273 4009 6 1 93 0 0
0 0 0 316780 1242608 5867344 0 0 0 0 2322 4108 5 2 93 0 0
0 0 0 318136 1242608 5867344 0 0 0 0 2209 3957 9 1 90 0 0
0 0 0 318300 1242608 5867344 0 0 0 0 2523 4649 5 1 94 0 0
1 0 0 318632 1242608 5867344 0 0 0 44 2174 3983 5 2 93 0 0
0 0 0 318144 1242608 5867344 0 0 0 64 2182 3951 5 2 94 0 0
0 0 0 317812 1242608 5867344 0 0 0 0 2516 4289 6 1 93 0 0
0 0 0 318036 1242608 5867344 0 0 0 0 2600 4421 8 1 91 0 0
vManage:~$
```

2. 호출 빈도

3. 로그인 방법(예: 후속 API 호출을 실행하는 단일 토큰 사용 또는 통화를 실행한 다음 로그아웃하 는 기본 인증 사용)

4. JSESSIONID를 다시 사용하고 있습니까?

참고 19.2 vManage 소프트웨어부터 API 호출에는 토큰 기반 인증만 지원됩니다.토큰 생성, 시간 초과 및 만료에 대한 자세한 내용은 이 <u>링크</u>를 참조하십시오.

DPI(Deep Packet Inspection) 통계/느림

문제 보고서:DPI를 활성화하면 통계 처리 속도가 느려지거나 vManage GUI 내에서 속도가 느려질 수 있습니다.

1단계. Administration(관리) > Settings(설정) > Statistics Database(통계 데이터베이스) > Configuration(컨피그레이션)으로 이동하여 vManage 내부에서 DPI에 할당된 디스크 크기를 확인 합니다.

2단계. vManage에서 다음 CLI 명령을 실행하여 인덱스 상태를 확인합니다.

vManage♯ request nms statistics-db diagnostics 3단계. DPI 통계와 관련된 API 호출이 외부에서 실행되는지 확인합니다.

4단계. vManage에서 이 CLI 명령의 도움을 받아 디스크 I/O 통계를 확인합니다.

vManage# request nms application-server diagnostics

템플릿 푸시 실패

문제 보고서:템플릿 푸시 또는 디바이스 템플릿 업데이트에 실패하거나 시간 초과됩니다.

1단계. Configure Devices(디바이스 구성) 버튼을 클릭하기 전에 vManage에서 **Config Preview** 및 **Intent** 컨피그레이션을 캡처합니다(여기에 제공된 탐색 예).

step 1, save output below to a text file	'Configure' action will be applied to 1 device(s) O attached to 1 device template(s).	step 2, save output to a text file
Config Preview Config Diff		Intent

2단계. logsettings 페이지에서 viptella.enable.rest.log를 활성화합니다(필수 정보를 캡처한 후 비활 성화해야 함).

https://<vManage IP>:8443/logsettings.html

3단계. 템플릿 푸시 실패가 NETCONF 문제 또는 오류와 관련된 경우 1단계**의 REST** 로그 외에 viptela.enable.device.netconf**.log를** 활성화합니다. 3단계 및 4단계의 출력을 캡처한 후에도 이 로그 를 비활성화해야 합니다.

4단계. vManage에서 실패한 템플릿을 다시 연결하고 이 CLI를 사용하여 admin-tech를 캡처합니다 (클러스터의 각 노드에 대해 이 캡처). vManage# request admin-tech

5단계. vManage 및 Config Diff의 작업에서 스크린샷을 제공하여 실패 세부사항과 템플릿에 사용된 CSV 파일을 확인합니다.

6단계. 실패한 푸시 시간, 실패한 디바이스의 **시스템** IP, vManage GUI에 표시되는 오류 메시지 등 오류 및 작업에 대한 세부 정보를 포함합니다.

7단계. 디바이스 자체에서 컨피그레이션에 대해 보고된 오류 메시지와 함께 템플릿 푸시 오류가 발 생하는 경우 디바이스에서도 admin-tech를 수집합니다.

클러스터 관련 문제

문제 보고서:클러스터 불안정으로 인해 GUI 시간 초과, 장진 현상 또는 기타 이상 현상이 발생합니 다.

1단계. 클러스터의 각 vManage 노드**에서 server_configs.json**의 출력을 캡처합니다.예를 들면 다음 과 같습니다.

```
vmanage# vshell
vmanage:~$ cd /opt/web-app/etc/
vmanage:/opt/web-app/etc$ more server_configs.json | python -m json.tool
{
"clusterid": "",
"domain": "",
"hostsEntryVersion": 12,
"mode": "SingleTenant",
"services": {
"cloudAgent": {
"clients": {
"0": "localhost:8553"
},
"deviceIP": "localhost:8553",
"hosts": {
"0": "localhost:8553"
},
"server": true,
"standalone": false
},
"container-manager": {
"clients": {
"0": "169.254.100.227:10502"
},
"deviceIP": "169.254.100.227:10502",
"hosts": {
"0": "169.254.100.227:10502"
},
"server": true,
"standalone": false
},
"elasticsearch": {
"clients": {
"0": "169.254.100.227:9300",
"1": "169.254.100.254:9300",
"2": "169.254.100.253:9300"
},
"deviceIP": "169.254.100.227:9300",
"hosts": {
```

```
"0": "169.254.100.227:9300",
"1": "169.254.100.254:9300",
"2": "169.254.100.253:9300"
},
"server": true,
"standalone": false
},
"kafka": {
"clients": {
"0": "169.254.100.227:9092",
"1": "169.254.100.254:9092",
"2": "169.254.100.253:9092"
},
"deviceIP": "169.254.100.227:9092",
"hosts": {
"0": "169.254.100.227:9092",
"1": "169.254.100.254:9092",
"2": "169.254.100.253:9092"
},
"server": true,
"standalone": false
},
"neo4j": {
"clients": {
"0": "169.254.100.227:7687",
"1": "169.254.100.254:7687",
"2": "169.254.100.253:7687"
},
"deviceIP": "169.254.100.227:7687",
"hosts": {
"0": "169.254.100.227:5000",
"1": "169.254.100.254:5000",
"2": "169.254.100.253:5000"
},
"server": true,
"standalone": false
},
"orientdb": {
"clients": {},
"deviceIP": "localhost:2424",
"hosts": {},
"server": false,
"standalone": false
},
"wildfly": {
"clients": {
"0": "169.254.100.227:8443",
"1": "169.254.100.254:8443",
"2": "169.254.100.253:8443"
},
"deviceIP": "169.254.100.227:8443",
"hosts": {
"0": "169.254.100.227:7600",
"1": "169.254.100.254:7600",
"2": "169.254.100.253:7600"
},
"server": true,
"standalone": false
},
"zookeeper": {
"clients": {
"0": "169.254.100.227:2181",
"1": "169.254.100.254:2181",
"2": "169.254.100.253:2181"
```

```
},
"deviceIP": "169.254.100.227:2181",
"hosts": {
"0": "169.254.100.227:2888:3888",
"1": "169.254.100.254:2888:3888",
"2": "169.254.100.253:2888:3888"
},
"server": true,
"standalone": false
}
},
"vmanageID": "0"
}
```

2단계. 각 노드에 대해 활성화되거나 비활성화된 서비스에 대한 세부 정보를 캡처합니다.이를 위해 vManage GUI에서 Administration > Cluster Management로 이동합니다.

3단계. 클러스터 인터페이스의 언더레이 도달 가능성을 확인합니다.이를 위해 VPN 0**의** 각 vManage 노드에서 다른 노드의 클러스터 인터페이스 IP에 ping **<ip-address>**를 실행합니다.

4단계. 클러스터의 각 vManage 노드에 대한 모든 NMS 서비스에서 진단을 수집합니다.

vManage# request nms application-server diagnostics vManage# request nms configuration-db diagnostics vManage# request nms messaging-server diagnostics vManage# request nms coordination-server diagnostics vManage# request nms statistics-db diagnostics

에지(vEdge/cEdge)

이 문제는 Edge 장치에 대해 보고된 일반적인 문제 조건과 수집해야 하는 각 항목에 대한 유용한 출 력입니다.각 문제에 대해 **관리자 기술**이 필요한 모든 에지 장치에 대해 수집되었는지 확인합니다 .클라우드 호스팅 컨트롤러의 경우, TAC에서 **Base Information Requested** 섹션의 피드백에 따라 디바이스에 필요한 관리자-기술 출력을 수집할 수 있는 액세스 권한이 **있습니다**.그러나 vManage와 마찬가지로, TAC 케이스를 열기 전에 이러한 데이터를 캡처하여 포함된 데이터가 문제의 시점과 관련되는지 확인해야 합니다.이는 문제가 지속되지 않을 경우 특히 사실입니다. 즉 TAC가 참여할 때 문제가 사라질 수 있습니다.

장치와 컨트롤러 간에 연결되지 않는 제어 연결

문제 보고서:vEdge/cEdge에서 하나 이상의 컨트롤러로의 제어 연결이 형성되지 않음

1단계. 제어 연결 실패의 로컬/원격 오류를 식별합니다.

• vEdge의 경우:show control connections-history 명령의 출력입니다.

• cEdge의 경우:show sdwan control connection-history 명령 출력

2단계. TLOC의 상태와 모든 상태가 'up'으로 표시되는지 확인합니다.

• vEdge의 경우:show control local-properties 명령의 출력입니다.

• cEdge의 경우:show sdwan control local-**properties** 명령**의** 출력입니다.

3단계. 시간 초과 또는 연결 실패(예: DCONFAIL 또는 VM_TMO)와 관련된 오류가 발생하면 에지 디바이스와 해당 컨트롤러에서 모두 컨트롤 플레인 캡처를 수행합니다.

• 컨트롤러:

vManage# tcpdump vpn 0 interface eth1 options "-vvvvvv host 192.168.44.6"
tcpdump -p -i eth1 -s 128 -vvvvvv host 192.168.44.6 in VPN 0
tcpdump: listening on eth1, link-type EN10MB (Ethernet), capture size 128 bytes
20:02:07.427064 IP (tos 0xc0, ttl 61, id 50139, offset 0, flags [DF], proto UDP (17), length
168)
192.168.44.6.12346 > 192.168.40.1.12346: UDP, length 140
20:02:07.427401 IP (tos 0xc0, ttl 64, id 37220, offset 0, flags [DF], proto UDP (17), length
210)
192.168.40.1.12346 > 192.168.44.6.12346: UDP, length 182
• vEdge의 경우:

vEdge-INET-Branch2# tcpdump vpn 0 interface ge0/2 options "-vvvvvv host 192.168.40.1" tcpdump -p -i ge0_2 -vvvvvv host 192.168.40.1 in VPN 0 tcpdump: listening on ge0_2, link-type EN10MB (Ethernet), capture size 262144 bytes 20:14:16.136276 IP (tos 0xc0, ttl 64, id 55858, offset 0, flags [DF], proto UDP (17), length 277) 10.10.10.1 > 192.168.40.1.12446: [udp sum ok] UDP, length 249 20:14:16.136735 IP (tos 0xc0, ttl 63, id 2907, offset 0, flags [DF], proto UDP (17), length 129) 192.168.40.1.12446 > 10.10.10.1.12346: [udp sum ok] UDP, length 101

• cEdge의 경우(아래 캡처는 디바이스가 CLI 모드로 이동되었고 CTRL-CAP라는 ACL(Access Control List)이 필터링을 위해 생성되었다고 가정합니다. 애플리케이션/네트워크 성능 시나리 오의 EPC 캡처 예에서 자세한 내용을 참조하십시오).

cEdge-Branch1#config-transaction cEdge-Branch1(config)# ip access-list extended CTRL-CAP cEdge-Branch1(config-ext-nacl)# 10 permit ip host 10.10.10.1 host 192.168.40.1 cEdge-Branch1(config-ext-nacl)# 20 permit ip host 192.168.40.1 host 10.10.10.1 cEdge-Branch1(config-ext-nacl)# commit cEdge-Branch1(config-ext-nacl)# end

cEdge-Branch1#monitor capture CAP control-plane both access-list CTRL-CAP buffer size 10 cEdge-Branch1#monitor capture CAP start

cEdge-Branch1#show monitor capture CAP buffer brief

size timestamp source destination dscp protocol

0 202 0.000000 192.168.20.1 -> 50.50.50.3 48 CS6 UDP 1 202 0.000000 192.168.20.1 -> 50.50.50.4 48 CS6 UDP

2 220 0.000000 50.50.50.3 -> 192.168.20.1 48 CS6 UDP

3 66 0.000992 192.168.20.1 -> 50.50.50.3 48 CS6 UDP

4 220 0.000992 50.50.50.4 -> 192.168.20.1 48 CS6 UDP 5 66 0.000992 192.168.20.1 -> 50.50.50.4 48 CS6 UDP

6 207 0.015991 50.50.50.1 -> 12.12.12.1 48 CS6 UDP

4단계. 제어 연결 기록 출력에서 관찰된 다른 오류와 설명된 문제에 대한 자세한 내용은 다음 <u>가이</u> <u>_</u>를 참조하십시오.

에지 디바이스와 컨트롤러 간의 연결 플랩 제어

문제 보고서:vEdge/cEdge와 하나 이상의 컨트롤러 간에 하나 이상의 제어 연결 플랩.이는 자연에서 자주, 간헐적으로 또는 무작위일 수 있습니다.

• 제어 연결 플랩은 일반적으로 디바이스와 컨트롤러 간의 패킷 손실 또는 전달 문제의 결과입니 다.이 오류는 실패의 방향에 따라 TMO 오류와 연결되는 경우가 많습니다.이를 자세히 확인하 려면 먼저 플랩의 원인을 확인합니다. vEdge/컨트롤러:show control connections-history 명령 출력cEdge의 경우:show sdwan control connection-history 명령 출력

- 플랩이 발생할 때 TLOC의 상태와 모든 상태가 'up'으로 표시되는지 확인합니다. vEdge의 경우 :show control local-**properties** 명령**의** 출력입니다.cEdge의 경우:show sdwan control local**properties** 명령**의** 출력입니다.
- 컨트롤러와 에지 디바이스 모두에서 패킷 캡처를 수집합니다.각 측의 캡처 매개 변수에 대한 자세한 내용은 Control Connections Not Forming Between Device and Controller 섹션을 참조 하십시오.

에지 디바이스 간에 BFD(Bidirectional Forwarding Detection) 세션이 형성되지 않거 나 플래핑되지 않음

문제 보고서:BFD 세션이 다운되었거나 두 에지 디바이스 간에 업/다운되었습니다.

1단계. 각 디바이스에서 BFD 세션의 상태를 수집합니다.

- vEdge의 경우:show bfd sessions 명령의 출력입니다.
- cEdge의 경우:show sdwan bfd sessions 명령**의** 출력입니다.

2단계. 각 에지 라우터에서 Rx 및 Tx 패킷 수를 수집합니다.

- vEdge의 경우:show tunnel statistics bfd 명령**의** 출력입니다.
- cEdge의 경우:show platform **hardware qfp active feature bfd datapath sdwan summary** 명령 출력

3단계. 위의 출력에서 터널의 한쪽 끝에서 BFD 세션에 대한 카운터가 증가하지 않으면 ACL을 사용 하여 패킷을 캡처하여 패킷이 로컬로 수신되는지 확인할 수 있습니다.이에 대한 자세한 내용과 함 께 수행할 수 있는 다른 검증도 <u>여기</u>에서 확인할 수 있습니다.

디바이스 충돌

문제 보고서:장치가 예기치 않게 다시 로드되고 전원 문제가 발생하지 않습니다.디바이스의 징후는 잠재적으로 충돌이 발생했음을 나타냅니다.

1단계. 디바이스에서 충돌 또는 예기치 않은 다시 로드가 관찰되었는지 확인합니다.

- vEdge의 경우:show reboot history 명령**의** 출력입니다.
- cEdge의 경우:show sdwan reboot history 명령**의** 출력입니다.
- 또는 Monitor(**모니터) > Network(네트워크**)로 이동하여 디바이스를 선택한 다음 **System**

Status(시스템 상태) > Reboot(재부팅)로 이동하여 예기치 않은 재로드가 있는지 확인합니다. 2단계. 확인된 경우, Tools(툴) > Operational Commands(운영 명령)로 이동하여 vManage를 통해 디바이스에서 admin-tech**를 캡처합니다**.그런 다음 장치의 Options 버튼을 선택하고 Admin Tech를 선택합니다.디바이스의 모든 로그 및 코어 파일을 포함하는 모든 확인란을 선택합니다.

사이트 간의 애플리케이션/네트워크 성능 저하 또는 실패

문제 보고서:애플리케이션이 작동하지 않음/HTTP 페이지가 로드되지 않음, 성능 저하/레이턴시, 정 책 또는 컨피그레이션 변경 후 장애 발생

1단계. 문제를 나타내는 애플리케이션 또는 플로우의 소스/대상 IP 쌍을 식별합니다.

2단계. 경로에 있는 모든 에지 디바이스를 확인하고 vManage를 통해 각에서 관리자 기술을 수집합

니다.

3단계. 문제가 표시되면 각 사이트의 에지 디바이스에서 이 플로우에 대한 패킷 캡처를 수행합니다.

- vEdge의 경우: Administration(관리) > Settings(설정) For Hostname(호스트 이름에 대한 설정) 필드에서 Data Stream을 활성화하려면 vManage의 시스템 IP를 입력합니다.VPN의 경우 0을 입력합니다.vManage VPN 0 인터페이스의 allow-service 컨피그레이션 아래에서 HTTPS가 활 성화되었는지 확인합니다.서비스 측 VPN 인터페이스에서 트래픽을 캡처하려면 <u>여기</u>의 단계를 따릅니다.
- cEdge의 경우: Configuration(컨피그레이션) > Devices(디바이스) > Change Mode(**모드 변경)** > CLI mode(CLI 모드)를 통해 cEdge를 CLI 모드로 **이동합니다.**cEdge에서 트래픽을 양방향으 로 매칭하도록 확장 ACL을 구성합니다.캡처에서 크기와 데이터를 제한하기 위해 프로토콜 및 포트를 포함하도록 최대한 구체적으로 지정합니다.
- (b)에서 생성한 ACL을 사용하여 서비스 측 인터페이스에 대해 EPC(Embedded Packet Capture)를 양방향 구성합니다.캡처를 PCAP 형식으로 내보내고 상자에서 복사할 수 있습니다 .BROKEN-FLOW라는 ACL을 사용하는 라우터의 GigabitEthernet0/0/0에 대한 샘플 컨피그레 이션이 여기에 제공됩니다.

monitor capture CAP interface GigabitEthernet0/0/0 both access-list BROKEN-FLOW buffer size 10
monitor capture CAP start

show monitor capture CAP parameter show monitor capture CAP buffer [brief]

monitor capture CAP export bootflash:cEdge1-Broken-Flow.pcap

• 트래픽을 <u>필터링하기</u> 위해 (b)에 생성된 ACL을 사용하여 양방향으로 트래픽에 대한 패킷 추적 을 구성합니다.다음은 샘플 컨피그레이션입니다.

debug platform packet-trace packet 2048 fia-trace debug platform packet-trace copy packet input 13 size 2048 debug platform condition ipv4 access-list BROKEN-FLOW both debug platform condition start

show platform packet-trace summary show platform packet-trace packet all | redirect bootflash:cEdge1-PT-OUTPUT.txt 4단계. 가능한 경우 비교 작업 시나리오에서 3단계를 반복합니다.

팁: cEdge에서 해당 파일을 직접 복사하는 다른 방법이 없는 경우 여기에 설명된 방법을 사용 하여 먼저 파일을 vManage에 복사할 수 있습니다. vManage에서 명령을 실행합니다. scp -P 830 <username>@<cEdge system-IP>:/bootflash/<filename> 요청 실행 이 파일은 vManage에 로그인하는 데 사용한 사용자 이름에 대한/home/<username>/ 디렉토 리에 저장됩니다.여기에서 SFTP(Secure File Transfer Protocol)의 SCP(Secure Copy Protocol)를 사용하여 타사 SCP/SFTP 클라이언트 또는 OpenSSH 유틸리티와 함께 Linux/Unix 시스템 CLI를 사용하여 vManage에서 파일을 복사할 수 있습니다.