Configuration d'IPSec entre un commutateur de passerelle d'accès Catalyst 4224 et d'un routeur Cisco IOS

Contenu

Introduction Conditions préalables Conditions requises Components Used Conventions Configuration Diagramme du réseau Configurations Vérification Dépannage Dépannage des commandes Exemples de débogages Informations connexes

Introduction

Ce document illustre l'exemple de configuration d'IPSec entre un commutateur de passerelle d'accès Cisco Catalyst 4224 et un routeur Cisco qui exécute le logiciel Cisco IOS®. Le chiffrement est effectué entre le VLAN1 de la passerelle d'accès (où la carte de chiffrement est appliquée) et l'interface FastEthernet0/1 du routeur.

Conditions préalables

Conditions requises

Aucune condition préalable spécifique n'est requise pour ce document.

Components Used

Les informations contenues dans ce document sont basées sur les versions de matériel et de logiciel suivantes :

- Logiciel Cisco IOS Version 12.1(1)14
- Logiciel IOS c4224 12.2(2)YC1

Les informations présentées dans ce document ont été créées à partir de périphériques dans un

environnement de laboratoire spécifique. All of the devices used in this document started with a cleared (default) configuration. Si vous travaillez dans un réseau opérationnel, assurez-vous de bien comprendre l'impact potentiel de toute commande avant de l'utiliser.

Conventions

Pour plus d'informations sur les conventions des documents, référez-vous aux <u>Conventions</u> <u>utilisées pour les conseils techniques de Cisco</u>.

Configuration

Cette section vous fournit des informations pour configurer les fonctionnalités décrites dans ce document.

Remarque : Pour en savoir plus sur les commandes utilisées dans le présent document, utilisez <u>l'outil de recherche de commandes</u> (clients <u>inscrits</u> seulement).

Diagramme du réseau

Ce document utilise la configuration réseau suivante :

Configurations

Ce document utilise les configurations suivantes :

- Commutateur de passerelle d'accès Catalyst 4224
- Routeur Cisco IOS

Commutateur de passerelle d'accès Catalyst 4224
triana# show version
Cisco Internetwork Operating System Software
IOS (tm) c4224 Software (c4224-IK9O3SX3-M), Version
12.2(2)YC1,
EARLY DEPLOYMENT RELEASE SOFTWARE (fc2)
26 FastEthernet/IEEE 802.3 interface(s)
2 Serial(sync/async) network interface(s)
2 Channelized E1/PRI port(s)
1 Virtual Private Network (VPN) Module(s)
<pre>! Access gateway has onboard encryption service</pre>
adapter. 8 Voice FXS interface(s) 256K bytes of non-
volatile configuration memory. 31744K bytes of processor
board System flash (Read/Write) Configuration register
is 0x2102 triana# show run

```
Building configuration...
Current configuration : 5111 bytes
1
! Last configuration change at 13:56:01 UTC Wed May 29
2002
! NVRAM config last updated at 13:56:03 UTC Wed May 29
2002
!
version 12.2
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
1
hostname triana
no logging buffered
enable password ww
1
memory-size iomem 25
!--- Create the VLANS as required. vlan 1
name default
vlan 3
name VLAN0003
!--- Create the VLANS as required. vlan 2
name data
vlan 999
name VLAN0999
!
ip subnet-zero
no ip domain-lookup
ip audit notify log
ip audit po max-events 100
ip ssh time-out 120
ip ssh authentication-retries 3
isdn switch-type primary-net5
voicecard mode toll-by-pass
1
!
1
ccm-manager mgcp
1
!--- Define Phase 1 policy. crypto isakmp policy 10
authentication pre-share
crypto isakmp key yoursecretkey address 209.165.201.6
!--- Define Phase 2 policy. crypto ipsec transform-set
basic esp-des esp-md5-hmac
crypto mib ipsec flowmib history tunnel size 200
crypto mib ipsec flowmib history failure size 200
!--- Define Phase 2 policy (continued). !--- Define the
encryption peer and crypto map parameters. crypto map
mymap 10 ipsec-isakmp
 set peer 209.165.201.6
 set transform-set basic
match address cryptoacl
```

```
no spanning-tree optimize bpdu transmission
no spanning-tree vlan 1
no spanning-tree vlan 2
no spanning-tree vlan 3
!
controller E1 2/0
!
controller E1 2/1
!
translation-rule 1
Rule 0 ^... 1
1
translation-rule 2
Rule 0 ^10.. 0
Rule 1 ^11.. 1
Rule 2 ^12.. 2
Rule 3 ^13.. 3
Rule 4 ^14.. 4
Rule 5 ^15.. 5
Rule 6 ^16.. 6
Rule 7 ^17.. 7
Rule 8 ^18.. 8
Rule 9 ^19.. 9
!
translation-rule 6
Rule 0 ^112. 119
!
translation-rule 7
Rule 0 ^1212 1196
translation-rule 3
Rule 0 ^. 0
1
translation-rule 9
Rule 0 ^. 9
!
translation-rule 99
Rule 0 ^90.. 0
Rule 1 ^91.. 1
Rule 2 ^92.. 2
Rule 3 ^93.. 3
Rule 4 ^94.. 4
Rule 5 ^95.. 5
Rule 6 ^96.. 6
Rule 7 ^97.. 7
Rule 8 ^98.. 8
Rule 9 ^99.. 9
1
translation-rule 999
Rule 0 ^2186 1196
Ţ
translation-rule 1122
Rule 0 ^1122 528001
Rule 1 ^1121 519352
1
translation-rule 20
Rule 0 ^000 500
!
1
interface Loopback0
no ip address
```

```
interface FastEthernet0/0
no ip address
 duplex auto
speed auto
1
interface Serial1/0
no ip address
no fair-queue
1
interface Serial1/1
no ip address
1
interface FastEthernet5/0
no ip address
duplex auto
speed auto
1
interface FastEthernet5/1
no ip address
 shutdown
 duplex auto
 speed auto
switchport voice vlan 3
spanning-tree portfast
!--- For the lab setup, a host is connected on this
port. interface FastEthernet5/2
no ip address
duplex auto
speed auto
!--- Place the port in VLAN 2. switchport access vlan 2
 spanning-tree portfast
interface FastEthernet5/3
no ip address
shutdown
duplex auto
 speed auto
 switchport access vlan 999
 spanning-tree portfast
ļ
interface FastEthernet5/4
no ip address
duplex auto
 speed auto
 switchport access vlan 2
 switchport voice vlan 3
spanning-tree portfast
1
interface FastEthernet5/5
no ip address
duplex auto
speed auto
1
interface FastEthernet5/6
no ip address
duplex auto
speed auto
1
interface FastEthernet5/7
no ip address
 duplex auto
 speed auto
```

```
interface FastEthernet5/8
no ip address
 duplex auto
speed auto
1
interface FastEthernet5/9
no ip address
duplex auto
speed auto
!
interface FastEthernet5/10
no ip address
duplex auto
speed auto
switchport trunk allowed vlan 1-3
switchport mode trunk
!--- By default, the port belongs to VLAN 1. interface
FastEthernet5/11
no ip address
duplex auto
speed auto
!
interface FastEthernet5/12
no ip address
duplex auto
speed auto
1
interface FastEthernet5/13
no ip address
duplex auto
speed auto
I
interface FastEthernet5/14
no ip address
duplex auto
speed auto
!
interface FastEthernet5/15
no ip address
duplex auto
speed auto
1
interface FastEthernet5/16
no ip address
duplex auto
speed auto
!
interface FastEthernet5/17
no ip address
duplex auto
speed auto
1
interface FastEthernet5/18
no ip address
duplex auto
speed auto
!
interface FastEthernet5/19
no ip address
duplex auto
 speed auto
1
interface FastEthernet5/20
no ip address
```

```
duplex auto
 speed auto
interface FastEthernet5/21
no ip address
duplex auto
speed auto
!
interface FastEthernet5/22
no ip address
duplex auto
speed auto
1
interface FastEthernet5/23
no ip address
duplex auto
speed auto
!
interface FastEthernet5/24
no ip address
duplex auto
speed auto
!--- Define an IP address and apply crypto map to enable
!--- IPSec processing on this interface. interface Vlan
1
ip address 209.165.201.5 255.255.255.224
crypto map mymap
!
!--- Define an IP address for VLAN 2. interface Vlan 2
ip address 192.168.10.1 255.255.255.0
1
ip classless
ip route 10.48.66.0 255.255.254.0 209.165.201.6
no ip http server
!
!
ip access-list extended cryptoacl
remark This is crypto ACL
permit ip 192.168.10.0 0.0.0.255 10.48.66.0 0.0.1.255
call rsvp-sync
1
voice-port 4/0
output attenuation 0
1
voice-port 4/1
output attenuation 0
1
voice-port 4/2
output attenuation 0
1
voice-port 4/3
output attenuation 0
!
voice-port 4/4
output attenuation 0
1
voice-port 4/5
output attenuation 0
1
voice-port 4/6
output attenuation 0
1
voice-port 4/7
```

```
output attenuation 0
!
mgcp
no mgcp timer receive-rtcp
!
mgcp profile default
!
dial-peer cor custom
!
!
1
dial-peer voice 1 voip
1
dial-peer voice 2 pots
shutdown
!
1
line con 0
exec-timeout 0 0
length 0
line vty 0 4
password ww
login
!
end
triana#
Routeur Cisco IOS
brussels#show run
Building configuration...
Current configuration : 1538 bytes
!
! Last configuration change at 17:16:19 UTC Wed May 29
2002
! NVRAM config last updated at 13:58:44 UTC Wed May 29
2002
!
version 12.1
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
1
hostname brussels
!
enable secret 5 $1$/vuT$08lTvZgSFJ0xq5uTFc94u.
1
!
!
ip subnet-zero
no ip domain-lookup
!
ip cef
ip audit notify log
ip audit po max-events 100
!
!
```

```
- Define Phase 1 policy. crypto isakmp policy 10
authentication pre-share
crypto isakmp key yoursecretkey address 209.165.201.5
!--- Define the encryption policy for this setup. crypto
ipsec transform-set basic esp-des esp-md5-hmac
!--- Define a static crypto map entry for the remote PIX
!--- with mode ipsec-isakmp. !--- This indicates that
Internet Key Exchange (IKE) !--- is used to establish
the IPSec !--- security associations for protecting the
traffic !--- specified by this crypto map entry. crypto
map vpnmap 10 ipsec-isakmp
set peer 209.165.201.5
set transform-set basic
match address cryptoacl
1
1
interface FastEthernet0/0
 ip address 10.48.66.34 255.255.254.0
no ip mroute-cache
duplex auto
speed auto
interface Serial0/0
no ip address
shutdown
1
!--- Enable crypto processing on the interface !---
where traffic leaves the network. interface
FastEthernet0/1
ip address 209.165.201.6 255.255.255.224
no ip mroute-cache
duplex auto
speed auto
crypto map vpnmap
1
interface Serial0/1
no ip address
shutdown
interface Group-Async1
no ip address
encapsulation ppp
async mode dedicated
ppp authentication pap
group-range 33 40
ip classless
ip route 192.168.10.0 255.255.255.0 209.165.201.5
ip http server
1
!--- This access list defines interesting traffic for
IPSec. ip access-list extended cryptoacl
permit ip 10.48.66.0 0.0.1.255 192.168.10.0 0.0.0.255
1
1
```

line con 0

exec-timeout 0 0
length 0
line 33 40
modem InOut
line aux 0
line vty 0 4
login local
!
end

Vérification

Cette section présente des informations que vous pouvez utiliser pour vous assurer que votre configuration fonctionne correctement. La vérification du fonctionnement d'IPSec est effectuée à l'aide des commandes **debug**. Une requête ping étendue est tentée à partir du routeur vers un hôte situé derrière la passerelle d'accès.

Certaines commandes **show** sont prises en charge par l'<u>Output Interpreter Tool</u> (clients enregistrés uniquement), qui vous permet de voir une analyse de la sortie de la commande show.

- show debug Affiche les paramètres de débogage actuels.
- show crypto isakmp sa Affiche toutes les associations de sécurité actuelles d'IKE (SA) sur un pair.
- show crypto ipsec sa Affiche les paramètres utilisés par les SA.

Dépannage

Cette section fournit des informations que vous pouvez utiliser pour dépanner votre configuration.

Dépannage des commandes

Note : Avant d'émettre des commandes debug, consultez <u>Informations importantes sur les</u> <u>commandes de débogage</u>.

- debug crypto ipsec Affiche des événements IPsec.
- debug crypto isakmp-Affichage de messages d'événements IKE.
- debug crypto engine Affiche des informations du moteur de chiffrement.

Exemples de débogages

Cette section fournit un exemple de résultat de débogage pour la passerelle d'accès et le routeur.

- <u>Commutateur de passerelle d'accès Catalyst 4224</u>
- Routeur Cisco IOS

Commutateur de passerelle d'accès Catalyst 4224

triana#debug crypto isakmp Crypto ISAKMP debugging is on triana#debug crypto engine Crypto Engine debugging is on triana#**show debug** Cryptographic Subsystem: Crypto ISAKMP debugging is on Crypto Engine debugging is on Crypto IPSEC debugging is on triana# May 29 18:01:57.746: ISAKMP (0:0): received packet from 209.165.201.6 (N) NEW SA May 29 18:01:57.746: ISAKMP: local port 500, remote port 500 May 29 18:01:57.746: ISAKMP (0:1): Input = IKE_MESG_FROM_PEER, IKE_MM_EXCH Old State = IKE_READY New State = IKE_R_MM1 May 29 18:01:57.746: ISAKMP (0:1): processing SA payload. message ID = 0 May 29 18:01:57.746: ISAKMP (0:1): found peer pre-shared key matching 209.165.201.6 !--- 4224 access gateway checks the attributes for Internet Security !--- Association & Key Management Protocol (ISAKMP) negotiation !--- against the policy it has in its local configuration. May 29 18:01:57.746: ISAKMP (0:1): Checking ISAKMP transform 1 against priority 10 policy May 29 18:01:57.746: ISAKMP: encryption DES-CBC May 29 18:01:57.746: ISAKMP: hash SHA May 29 18:01:57.746: ISAKMP: default group 1 May 29 18:01:57.746: ISAKMP: auth pre-share !---The received attributes are acceptable !--- against the configured set of attributes. May 29 18:01:57.746: ISAKMP (0:1): atts are acceptable. Next payload is 0 May 29 18:01:57.746: CryptoEngine0: generate alg parameter May 29 18:01:57.746: CryptoEngine0: CRYPTO_ISA_DH_CREATE(hw)(ipsec) May 29 18:01:57.898: CRYPTO_ENGINE: Dh phase 1 status: 0 May 29 18:01:57.898: ISAKMP (0:1): Input = IKE_MESG_INTERNAL, IKE_PROCESS_MAIN_MODE Old State = IKE_R_MM1 New State = IKE_R_MM1 May 29 18:01:57.898: ISAKMP (0:1): SA is doing pre-shared key authentication using id type ID_IPV4_ADDR May 29 18:01:57.898: ISAKMP (0:1): sending packet to 209.165.201.6 (R) MM_SA_SETUP May 29 18:01:57.898: ISAKMP (0:1): Input = IKE_MESG_INTERNAL, IKE_PROCESS_COMPLETE Old State = IKE_R_MM1 New State = IKE_R_MM2 May 29 18:01:58.094: ISAKMP (0:1): received packet from 209.165.201.6 (R) MM_SA_SETUP May 29 18:01:58.094: ISAKMP (0:1): Input = IKE_MESG_FROM_PEER, IKE_MM_EXCH Old State = IKE_R_MM2 New State = IKE_R_MM3 May 29 18:01:58.098: ISAKMP (0:1): processing KE payload. message ID = 0 May 29 18:01:58.098: CryptoEngine0: generate alg parameter May 29 18:01:58.098: CryptoEngine0: CRYPTO_ISA_DH_SHARE_SECRET(hw)(ipsec) May 29 18:01:58.246: ISAKMP (0:1): processing NONCE payload. message ID = 0 May 29 18:01:58.246: ISAKMP (0:1): found peer pre-shared key matching 209.165.201.6 May 29 18:01:58.250: CryptoEngine0: create ISAKMP SKEYID for conn id 1 May 29 18:01:58.250: CryptoEngine0: CRYPTO_ISA_SA_CREATE(hw)(ipsec) May 29 18:01:58.250: ISAKMP (0:1): SKEYID state generated May 29 18:01:58.250: ISAKMP (0:1): processing vendor id payload May 29 18:01:58.250: ISAKMP (0:1): speaking to another IOS box! May 29 18:01:58.250: ISAKMP (0:1): Input = IKE_MESG_INTERNAL, IKE_PROCESS_MAIN_MODE Old State = IKE_R_MM3 New State = IKE_R_MM3 May 29 18:01:58.250: ISAKMP (0:1): sending packet to 209.165.201.6 (R) MM_KEY_EXCH May 29 18:01:58.250: ISAKMP (0:1): Input = IKE MESG INTERNAL, IKE PROCESS COMPLETE Old State = IKE_R_MM3 New State = IKE_R_MM4 May 29 18:01:58.490: ISAKMP (0:1): received packet from 209.165.201.6 (R) MM_KEY_EXCH May 29 18:01:58.490: CryptoEngine0: CRYPTO_ISA_IKE_DECRYPT(hw) (ipsec) May 29 18:01:58.490: ISAKMP (0:1): Input = IKE_MESG_FROM_PEER, IKE_MM_EXCH Old State = IKE_R_MM4 New State = IKE_R_MM5 May 29 18:01:58.490: ISAKMP (0:1): processing ID payload. message ID = 0 May 29 18:01:58.490: ISAKMP (0:1): processing HASH payload. message ID = 0 May 29 18:01:58.490: CryptoEngine0: generate hmac context for conn id 1 May 29 18:01:58.490: CryptoEngine0: CRYPTO_ISA_IKE_HMAC(hw)(ipsec) May 29 18:01:58.490: ISAKMP (0:1): SA has been authenticated with 209.165.201.6 !--- Phase 1 authentication is successful and the SA is authenticated. May 29 18:01:58.494: ISAKMP (0:1): Input = IKE_MESG_INTERNAL, IKE_PROCESS_MAIN_MODE Old State = IKE_R_MM5 New State =

IKE_R_MM5 May 29 18:01:58.494: ISAKMP (1): ID payload next-payload : 8 type : 1 protocol : 17

port : 500 length : 8 May 29 18:01:58.494: ISAKMP (1): Total payload length: 12 May 29 18:01:58.494: CryptoEngine0: generate hmac context for conn id 1 May 29 18:01:58.494: CryptoEngine0: CRYPTO_ISA_IKE_HMAC(hw)(ipsec) May 29 18:01:58.494: CryptoEngine0: clear dh number for conn id 1 May 29 18:01:58.494: CryptoEngine0: CRYPTO_ISA_DH_DELETE(hw)(ipsec) May 29 18:01:58.494: CryptoEngine0: CRYPTO_ISA_IKE_ENCRYPT(hw)(ipsec) May 29 18:01:58.494: ISAKMP (0:1): sending packet to 209.165.201.6 (R) QM_IDLE May 29 18:01:58.498: ISAKMP (0:1): Input = IKE_MESG_INTERNAL, IKE_PROCESS_COMPLETE Old State = IKE_R_MM5 New State = IKE_P1_COMPLETE May 29 18:01:58.518: ISAKMP (0:1): received packet from 209.165.201.6 (R) OM_IDLE May 29 18:01:58.518: CryptoEngine0: CRYPTO_ISA_IKE_DECRYPT(hw)(ipsec) May 29 18:01:58.518: CryptoEngine0: generate hmac context for conn id 1 May 29 18:01:58.518: CryptoEngine0: CRYPTO_ISA_IKE_HMAC(hw)(ipsec) May 29 18:01:58.522: ISAKMP (0:1): processing HASH payload. message ID = -1809462101 May 29 18:01:58.522: ISAKMP (0:1): processing SA payload. message ID = -1809462101 May 29 18:01:58.522: ISAKMP (0:1): Checking IPSec proposal 1 May 29 18:01:58.522: ISAKMP: transform 1, ESP_DES May 29 18:01:58.522: ISAKMP: attributes in transform: May 29 18:01:58.522: ISAKMP: encaps is 1 May 29 18:01:58.522: ISAKMP: SA life type in seconds May 29 18:01:58.522: ISAKMP: SA life duration (basic) of 3600 May 29 18:01:58.522: ISAKMP: SA life type in kilobytes May 29 18:01:58.522: ISAKMP: SA life duration (VPI) of 0x0 0x46 0x50 0x0 May 29 18:01:58.522: ISAKMP: authenticator is HMAC-MD5 May 29 18:01:58.522: validate proposal 0 May 29 18:01:58.522: ISAKMP (0:1): atts are acceptable.

May 29 18:01:58.522: IPSEC(validate_proposal_request): proposal part #1, !--- After the attributes are negotiated, !--- IKE asks IPSec to validate the proposal. (key eng. msg.) dest= 209.165.201.5, src= 209.165.201.6, dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4), src_proxy= 10.48.66.0/255.255.254.0/0/0 (type=4), protocol= ESP, transform= esp-des esp-md5-hmac , lifedur= 0s and 0kb, spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x4 !--- spi is still zero because SAs have not been set. May 29 18:01:58.522: validate proposal request 0 May 29 18:01:58.522: ISAKMP (0:1): processing NONCE payload. message ID = -1809462101 May 29 18:01:58.522: ISAKMP (0:1): processing ID payload. message ID = -1809462101 May 29 18:01:58.522: ISAKMP (1): ID_IPV4_ADDR_SUBNET src 10.48.66.0/255.255.254.0 prot 0 port 0 May 29 18:01:58.522: ISAKMP (0:1): processing ID payload. message ID = -1809462101 May 29 18:01:58.522: ISAKMP (1): ID_IPV4_ADDR_SUBNET dst 192.168.10.0/255.255.255.0 prot 0 port 0 May 29 18:01:58.522: ISAKMP (0:1): asking for 1 spis from ipsec May 29 18:01:58.522: ISAKMP (0:1): Node -1809462101, Input = IKE_MESG_FROM_PEER, IKE_QM_EXCH Old State = IKE_QM_READY New State = IKE_QM_SPI_STARVE May 29 18:01:58.526: IPSEC(key_engine): got a queue event... May 29 18:01:58.526: IPSEC(spi_response): getting spi 3384026087 for SA from 209.165.201.6 to 209.165.201.5 for prot 3 May 29 18:01:58.526: ISAKMP: received ke message (2/1) May 29 18:01:58.774: CryptoEngine0: generate hmac context for conn id 1 May 29 18:01:58.774: CryptoEngine0: CRYPTO_ISA_IKE_HMAC(hw)(ipsec) May 29 18:01:58.774: CryptoEngine0: CRYPTO ISA IKE ENCRYPT(hw) (ipsec) May 29 18:01:58.774: ISAKMP (0:1): sending packet to 209.165.201.6 (R) QM_IDLE May 29 18:01:58.774: ISAKMP (0:1): Node -1809462101, Input = IKE_MESG_FROM_IPSEC, IKE_SPI_REPLY Old State = IKE_QM_SPI_STARVE New State = IKE_QM_R_QM2 May 29 18:01:58.830: ISAKMP (0:1): received packet from 209.165.201.6 (R) QM_IDLE May 29 18:01:58.830: CryptoEngine0: CRYPTO_ISA_IKE_DECRYPT(hw)(ipsec) May 29 18:01:58.834: CryptoEngine0: generate hmac context for conn id 1 May 29 18:01:58.834: CryptoEngine0: CRYPTO_ISA_IKE_HMAC(hw)(ipsec) May 29 18:01:58.834: ipsec allocate flow 0 May 29 18:01:58.834: ipsec allocate flow 0 May 29 18:01:58.834: CryptoEngine0: CRYPTO_ISA_IPSEC_KEY_CREATE(hw)(ipsec) May 29 18:01:58.834: CryptoEngine0: CRYPTO_ISA_IPSEC_KEY_CREATE(hw)(ipsec) May 29 18:01:58.838: ISAKMP (0:1): Creating IPSec SAs May 29 18:01:58.838: inbound SA from 209.165.201.6 to 209.165.201.5 (proxy 10.48.66.0 to 192.168.10.0) has spi 0xC9B423E7 and conn_id 50 and flags 4 May 29 18:01:58.838: lifetime of 3600 seconds May 29 18:01:58.838: lifetime of 4608000 kilobytes May 29 18:01:58.838: May 29 18:01:58.838: outbound SA from 209.165.201.5 to 209.165.201.6 (proxy 192.168.10.0 to 10.48.66.0) May 29 18:01:58.838: has spi 561973207 and conn_id 51 and flags 4 May 29 18:01:58.838: lifetime of 3600 seconds May 29 18:01:58.838: lifetime of 4608000 kilobytes May 29 18:01:58.838: ISAKMP (0:1): deleting node -1809462101 error FALSE reason "quick mode done (await()" May 29 18:01:58.838: ISAKMP (0:1): Node -1809462101, Input = IKE_MESG_FROM_PEER, IKE_QM_EXCH Old State = IKE_QM_R_QM2 New State = IKE_QM_PHASE2_COMPLETE May 29 18:01:58.838: IPSEC(key_engine): got a queue event... May 29 18:01:58.838: IPSEC(initialize_sas): ,

```
(key eng. msg.) dest= 209.165.201.5, src= 209.165.201.6,
   dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
   src_proxy= 10.48.66.0/255.255.254.0/0/0 (type=4),
   protocol= ESP, transform= esp-des esp-md5-hmac ,
   lifedur= 3600s and 4608000kb,
    spi= 0xC9B423E7(3384026087), conn_id= 50, keysize= 0, flags= 0x4
 !--- IPSec SAs are now initialized and encrypted !--- communication can now take place. May 29
18:01:58.838: IPSEC(initialize_sas): , (key eng. msg.) src= 209.165.201.5, dest= 209.165.201.6,
src_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4), dest_proxy= 10.48.66.0/255.255.254.0/0/0
(type=4), protocol= ESP, transform= esp-des esp-md5-hmac , lifedur= 3600s and 4608000kb, spi=
0x217F07D7(561973207), conn_id= 51, keysize= 0, flags= 0x4 !--- IPSec SAs are now initialized
and encrypted !--- communication can now take place. May 29 18:01:58.838: IPSEC(create_sa): sa
created, (sa) sa_dest= 209.165.201.5, sa_prot= 50, sa_spi= 0xC9B423E7(3384026087), sa_trans=
esp-des esp-md5-hmac , sa_conn_id= 50 May 29 18:01:58.838: IPSEC(create_sa): sa created, (sa)
sa_dest= 209.165.201.6, sa_prot= 50, sa_spi= 0x217F07D7(561973207), sa_trans= esp-des esp-md5-
hmac , sa_conn_id= 51 !--- Observe that two IPSec SAs are created. !--- Recollect that IPSec SAs
are bidirectional. triana# triana# triana# triana# show crypto isakmp sa
dst
                                           state conn-id slot
                             src
209.165.201.5 209.165.201.6 QM_IDLE
                                            &n bsp; 1 0
triana#show crypto ipsec sa
interface: Vlan 1
   Crypto map tag: mymap, local addr. 209.165.201.5
   local ident (addr/mask/prot/port): (192.168.10.0/255.255.255.0/0/0)
   remote ident (addr/mask/prot/port): (10.48.66.0/255.255.254.0/0/0)
   current_peer: 209.165.201.6
    PERMIT, flags={origin_is_acl,}
    #pkts encaps: 4, #pkts encrypt: 4, #pkts digest 4
    #pkts decaps: 4, #pkts decrypt: 4, #pkts verify 4
    #pkts compressed: 0, #pkts decompressed: 0
    #pkts not compressed: 0, #pkts compr. failed: 0, #pkts decompress failed: 0
    #send errors 0, #recv errors 0
    local crypto endpt.: 209.165.201.5, remote crypto endpt.: 209.165.201.6
    path mtu 1500, media mtu 1500
    current outbound spi: 217F07D7
    inbound esp sas:
     spi: 0xC9B423E7(3384026087)
       transform: esp-des esp-md5-hmac ,
       in use settings ={Tunnel, }
       slot: 0, conn id: 50, flow_id: 1, crypto map: mymap
       sa timing: remaining key lifetime (k/sec): (4607998/3536)
       IV size: 8 bytes
       replay detection support: Y
    inbound ah sas:
     inbound pcp sas:
    outbound esp sas:
     spi: 0x217F07D7(561973207)
       transform: esp-des esp-md5-hmac ,
       in use settings ={Tunnel, }
       slot: 0, conn id: 51, flow_id: 2, crypto map: mymap
```

sa timing: remaining key lifetime (k/sec): (4607999/3536)
IV size: 8 bytes

outbound ah sas:

replay detection support: Y

outbound pcp sas:

triana# Routeur Cisco IOS

```
brussels#show debug
Cryptographic Subsystem:
  Crypto ISAKMP debugging is on
  Crypto Engine debugging is on
  Crypto IPSEC debugging is on
brussels#p
Protocol [ip]:
Target IP address: 192.168.10.5
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface: fastethernet0/0
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.10.5, timeout is 2 seconds:
May 29 18:01:54.285: IPSEC(sa_request): ,
  (key eng. msg.) src= 209.165.201.6, dest= 209.165.201.5,
    src_proxy= 10.48.66.0/255.255.254.0/0/0 (type=4),
    dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
    protocol= ESP, transform= esp-des esp-md5-hmac ,
    lifedur= 3600s and 4608000kb,
    spi= 0x217F07D7(561973207), conn_id= 0, keysize= 0, flags= 0x4004
May 29 18:01:54.285: ISAKMP: received ke message (1/1)
May 29 18:01:54.285: ISAKMP: local port 500, remote port 500
May 29 18:01:54.289: ISAKMP (0:1): beginning Main Mode exchange
May 29 18:01:54.289: ISAKMP (1): sending packet to 209.165.201.5 (I) MM_NO_STATE
May 29 18:01:54.461: ISAKMP (1): received packet from 209.165.201.5 (I) MM_NO_STATE
May 29 18:01:54.461: ISAKMP (0:1): processing SA payload. message ID = 0
May 29 18:01:54.461: ISAKMP (0:1): Checking ISAKMP transform 1
  against priority 10 policy
May 29 18:01:54.465: ISAKMP:
                                  encryption DES-CBC
May 29 18:01:54.465: ISAKMP:
                                hash SHA
May 29 18:01:54.465: ISAKMP:
                                default group 1
May 29 18:01:54.465: ISAKMP:
                                auth pre-share
May 29 18:01:54.465: ISAKMP (0:1): atts are acceptable. Next payload is 0
May 29 18:01:54.465: CryptoEngine0: generate alg parameter
May 29 18:01:54.637: CRYPTO_ENGINE: Dh phase 1 status: 0
May 29 18:01:54.637: CRYPTO_ENGINE: Dh phase 1 status: 0
May 29 18:01:54.637: ISAKMP (0:1): SA is doing pre-shared key authentication
May 29 18:01:54.637: ISAKMP (1): SA is doing pre-shared key authentication using
                                 id type ID_IPV4_ADDR
May 29 18:01:54.641: ISAKMP (1): sending packet to 209.165.201.5 (I) MM_SA_SETUP
May 29 18:01:54.805: ISAKMP (1): received packet from 209.165.201.5 (I) MM_SA_SETUP
May 29 18:01:54.805: ISAKMP (0:1): processing KE payload. message ID = 0
May 29 18:01:54.805: CryptoEngine0: generate alg parameter
May 29 18:01:55.021: ISAKMP (0:1): processing NONCE payload. messa.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 20/21/24 ms
brussels#ge ID = 0
May 29 18:01:55.021: CryptoEngine0: create ISAKMP SKEYID for conn id 1
May 29 18:01:55.025: ISAKMP (0:1): SKEYID state generated
```

```
May 29 18:01:55.029: ISAKMP (0:1): processing vendor id payload
May 29 18:01:55.029: ISAKMP (0:1): speaking to another IOS box!
May 29 18:01:55.029: ISAKMP (1): ID payload
       next-payload : 8
                    : 1
        type
        protocol
                    : 17
        port
                     : 500
        length
                    : 8
May 29 18:01:55.029: ISAKMP (1): Total payload length: 12
May 29 18:01:55.029: CryptoEngine0: generate hmac context for conn id 1
May 29 18:01:55.033: ISAKMP (1): sending packet to 209.165.201.5 (I) MM_KEY_EXCH
May 29 18:01:55.049: ISAKMP (1): received packet from 209.165.201.5 (I) MM_KEY_EXCH
May 29 18:01:55.053: ISAKMP (0:1): processing ID payload. message ID = 0
May 29 18:01:55.053: ISAKMP (0:1): processing HASH payload. message ID = 0
May 29 18:01:55.053: CryptoEngine0: generate hmac context for conn id 1
May 29 18:01:55.057: ISAKMP (0:1): SA has been authenticated with 209.165.201.5
!--- Phase 1 is completed and Phase 2 starts now. May 29 18:01:55.057: ISAKMP (0:1): beginning
Quick Mode exchange, M-ID of -1809462101 May 29 18:01:55.061: CryptoEngine0: generate hmac
context for conn id 1 May 29 18:01:55.065: ISAKMP (1): sending packet to 209.165.201.5 (I)
QM_IDLE May 29 18:01:55.065: CryptoEngine0: clear dh number for conn id 1 May 29 18:01:55.337:
ISAKMP (1): received packet from 209.165.201.5 (I) QM_IDLE May 29 18:01:55.341: CryptoEngine0:
generate hmac context for conn id 1 May 29 18:01:55.345: ISAKMP (0:1): processing SA payload.
message ID = -1809462101 May 29 18:01:55.345: ISAKMP (0:1): Checking IPSec proposal 1 May 29
18:01:55.345: ISAKMP: transform 1, ESP_DES May 29 18:01:55.345: ISAKMP: attributes in transform:
May 29 18:01:55.345: ISAKMP: encaps is 1 May 29 18:01:55.345: ISAKMP: SA life type in seconds
May 29 18:01:55.345: ISAKMP: SA life duration (basic) of 3600 May 29 18:01:55.345: ISAKMP: SA
life type in kilobytes May 29 18:01:55.345: ISAKMP: SA life duration (VPI) of 0x0 0x46 0x50 0x0
May 29 18:01:55.349: ISAKMP: authenticator is HMAC-MD5 May 29 18:01:55.349: validate proposal 0
May 29 18:01:55.349: ISAKMP (0:1): atts are acceptable.
May 29 18:01:55.349: IPSEC(validate_proposal_request): proposal part #1,
!--- After negotiating the attributes, IKE asks IPSec to !--- validate the proposal. (key eng.
msg.) dest= 209.165.201.5, src= 209.165.201.6, dest_proxy= 192.168.10.0/255.255.255.0/0/0
(type=4), src_proxy= 10.48.66.0/255.255.254.0/0/0 (type=4), protocol= ESP, transform= esp-des
esp-md5-hmac , lifedur= 0s and 0kb, spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x4 !--- spi is
still zero because SAs have not been set. May 29 18:01:55.353: validate proposal request 0 May
29 18:01:55.357: ISAKMP (0:1): processing NONCE payload. message ID = -1809462101 May 29
18:01:55.357: ISAKMP (0:1): processing ID payload. message ID = -1809462101 May 29 18:01:55.357:
ISAKMP (0:1): processing ID payload. message ID = -1809462101 May 29 18:01:55.357:
CryptoEngine0: generate hmac context for conn id 1 May 29 18:01:55.361: ipsec allocate flow 0
May 29 18:01:55.361: ipsec allocate flow 0 May 29 18:01:55.369: ISAKMP (0:1): Creating IPSec SAs
May 29 18:01:55.369:
                            inbound SA from 209.165.201.5
                                                            to 209.165.201.6
                             (proxy 192.168.10.0 to 10.48.66.0)
                             has spi 561973207 and conn_id 2000 and flags 4
May 29 18:01:55.369:
May 29 18:01:55.373:
                             lifetime of 3600 seconds
May 29 18:01:55.373:
                            lifetime of 4608000 kilobytes
                            outbound SA from 209.165.201.6
                                                              to 209.165.201.5
May 29 18:01:55.373:
                            (proxy 10.48.66.0 to 192.168.10.0)
                            has spi -910941209 and conn_id 2001 and flags 4
May 29 18:01:55.373:
                            lifetime of 3600 seconds
May 29 18:01:55.373:
May 29 18:01:55.373:
                            lifetime of 4608000 kilobytes
May 29 18:01:55.377: ISAKMP (1): sending packet to 209.165.201.5 (I) QM_IDLE
May 29 18:01:55.377: ISAKMP (0:1): deleting node -1809462101 error FALSE reason ""
May 29 18:01:55.381: IPSEC(key_engine): got a queue event...
May 29 18:01:55.381: IPSEC(initialize_sas): ,
  (key eng. msg.) dest= 209.165.201.6, src= 209.165.201.5,
    dest_proxy= 10.48.66.0/255.255.254.0/0/0 (type=4),
    src_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
    protocol= ESP, transform= esp-des esp-md5-hmac ,
    lifedur= 3600s and 4608000kb,
    spi= 0x217F07D7(561973207), conn_id= 2000, keysize= 0, flags= 0x4
 !--- IPSec SAs are now initialized and encrypted !--- communication can now take place. May 29
18:01:55.381: IPSEC(initialize_sas): , (key eng. msg.) src= 209.165.201.6, dest= 209.165.201.5,
src_proxy= 10.48.66.0/255.255.254.0/0/0 (type=4), dest_proxy= 192.168.10.0/255.255.255.0/0/0
```

(type=4), protocol= ESP, transform= esp-des esp-md5-hmac , lifedur= 3600s and 4608000kb, spi=

0xC9B423E7(3384026087), conn_id= 2001, keysize= 0, flags= 0x4 !--- IPSec SAs are now initialized and encrypted !--- communication can now take place. May 29 18:01:55.385: IPSEC(create_sa): sa created, (sa) sa_dest= 209.165.201.6, sa_prot= 50, sa_spi= 0x217F07D7(561973207), sa_trans= espdes esp-md5-hmac, sa_conn_id= 2000 May 29 18:01:55.385: IPSEC(create_sa): sa created, (sa) sa_dest= 209.165.201.5, sa_prot= 50, sa_spi= 0xC9B423E7(3384026087), sa_trans= esp-des esp-md5hmac, sa_conn_id= 2001 !--- Observe that two IPSec SAs are created. !--- Recollect that IPSec SAs are bidirectional. brussels# brussels#show crypto isakmp sa

 dst
 src
 state
 conn-id
 slot

 209.165.201.5
 209.165.201.6
 QM_IDLE
 1
 0

brussels#show crypto ipsec sa

```
interface: FastEthernet0/1
   Crypto map tag: vpnmap, local addr. 209.165.201.6
   local ident (addr/mask/prot/port): (10.48.66.0/255.255.254.0/0/0)
   remote ident (addr/mask/prot/port): (192.168.10.0/255.255.255.0/0/0)
   current_peer: 209.165.201.5
    PERMIT, flags={origin_is_acl,}
    #pkts encaps: 4, #pkts encrypt: 4, #pkts digest 4
    #pkts decaps: 4, #pkts decrypt: 4, #pkts verify 4
    #pkts compressed: 0, #pkts decompressed: 0
    #pkts not compressed: 0, #pkts compr. failed: 0, #pkts decompress failed: 0
    #send errors 1, #recv errors 0
    local crypto endpt.: 209.165.201.6, remote crypto endpt.: 209.165.201.5
    path mtu 1500, media mtu 1500
     current outbound spi: C9B423E7
     inbound esp sas:
      spi: 0x217F07D7(561973207)
        transform: esp-des esp-md5-hmac ,
        in use settings ={Tunnel, }
       slot: 0, conn id: 2000, flow_id: 1, crypto map: vpnmap
        sa timing: remaining key lifetime (k/sec): (4607998/3560)
        IV size: 8 bytes
        replay detection support: Y
     inbound ah sas:
     inbound pcp sas:
     outbound esp sas:
      spi: 0xC9B423E7(3384026087)
        transform: esp-des esp-md5-hmac ,
        in use settings ={Tunnel, }
       slot: 0, conn id: 2001, flow_id: 2, crypto map: vpnmap
        sa timing: remaining key lifetime (k/sec): (4607999/3560)
        IV size: 8 bytes
        replay detection support: Y
     outbound ah sas:
     outbound pcp sas:
```

brussels# Informations connexes

- Page d'assistance IPsec
- Introduction à IPSec

<u>Support technique - Cisco Systems</u>