Exemple de configuration de IPSec/GRE avec NAT sur routeur IOS

Contenu

Introduction

Avant de commencer

Conventions

Conditions préalables

Components Used

Configuration

Diagramme du réseau

Configurations

Vérification

Dépannage

Dépannage des commandes

Suppression des associations de sécurité (SA)

Informations connexes

Introduction

Cet exemple de configuration montre comment configurer la GRE (Generic Routing Encapsulation) sur la sécurité IP (IPSec) lorsque le tunnel GRE/IPSec passe à travers un pare-feu faisant la traduction d'adresses réseau (NAT).

Avant de commencer

Conventions

Pour plus d'informations sur les conventions des documents, référez-vous aux <u>Conventions</u> utilisées pour les conseils techniques de Cisco.

Conditions préalables

Ce type de configuration pourrait être utilisé pour tunnel et chiffrer le trafic qui normalement ne passerait pas par un pare-feu, tel qu'IPX (comme dans notre exemple ici) ou les mises à jour de routage. Dans cet exemple, le tunnel entre le 2621 et le 3660 ne fonctionne que lorsque le trafic est généré à partir de périphériques sur les segments LAN (et non pas à partir d'une requête ping IP/IPX étendue des routeurs IPSec). La connectivité IP/IPX a été testée avec une requête ping IP/IPX entre les périphériques 2513A et 2513B.

Remarque: cela ne fonctionne pas avec la traduction d'adresses de port (PAT).

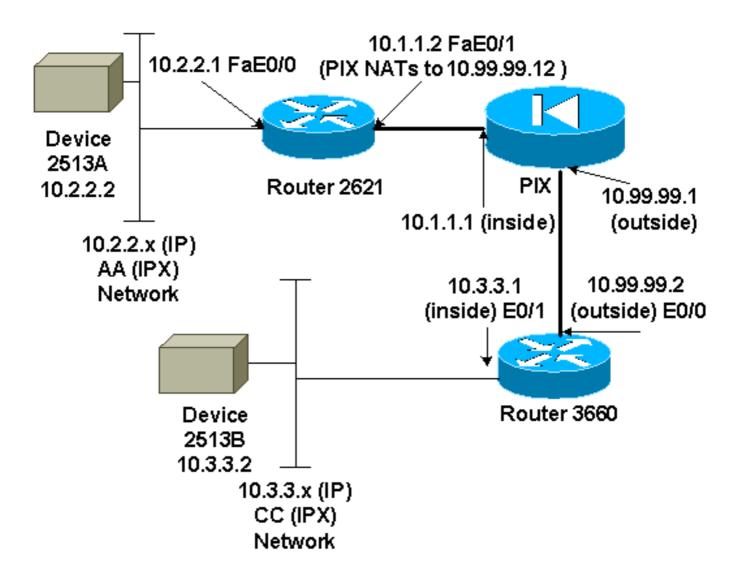
Components Used

Les informations dans ce document sont basées sur les versions de logiciel et de matériel cidessous.

- Cisco IOS® 12.4
- Pare-feu Cisco PIX 535
- Logiciel Cisco PIX Firewall Version 7.x et ultérieure

Les informations présentées dans ce document ont été créées à partir de périphériques dans un environnement de laboratoire spécifique. All of the devices used in this document started with a cleared (default) configuration. Si vous travaillez dans un réseau opérationnel, assurez-vous de bien comprendre l'impact potentiel de toute commande avant de l'utiliser.

Configuration


Cette section vous fournit des informations pour configurer les fonctionnalités décrites dans ce document.

Remarque: Pour en savoir plus sur les commandes utilisées dans le présent document, utilisez <u>l'outil de recherche de commandes</u> (clients <u>inscrits</u> seulement).

Remarque sur la configuration IOS: Avec la plate-forme logicielle Cisco IOS 12.2(13)T et les codes ultérieurs (codes de train T numérotés plus élevés, 12.3 et les codes ultérieurs), la carte de chiffrement IPSEC configurée ne doit être appliquée qu'à l'interface physique et n'est plus nécessaire à l'interface de tunnel GRE. La « crypto map » sur l'interface physique et tunnel lors de l'utilisation des codes 12.2.(13)T et ultérieurs fonctionne toujours. Cependant, il est fortement recommandé de l'appliquer uniquement sur l'interface physique.

Diagramme du réseau

Ce document utilise la configuration réseau indiquée dans le diagramme suivant :

Remarque : les adresses IP utilisées dans cette configuration ne sont pas routables légalement sur Internet. Ce sont des adresses <u>RFC 1918 qui ont été utilisées dans un environnement de laboratoire</u>.

Notes de diagramme de réseau

- Tunnel GRE de 10.2.2.1 à 10.3.3.1 (réseau IPX BB)
- Tunnel IPSec de 10.1.1.2 (10.99.99.12) à 10.99.99.2

Configurations

```
Périphérique 2513A

ipx routing 00e0.b064.20c1
!
interface Ethernet0
ip address 10.2.2.2 255.255.255.0
no ip directed-broadcast
ipx network AA
!
ip route 0.0.0.0 0.0.0.0 10.2.2.1
!--- Output Suppressed

2621
```

```
version 12.4
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
hostname 2621
ip subnet-zero
ip audit notify log
ip audit po max-events 100
ipx routing 0030.1977.8f80
isdn voice-call-failure 0
cns event-service server
crypto isakmp policy 10
hash md5
authentication pre-share
crypto isakmp key cisco123 address 10.99.99.2
crypto ipsec transform-set myset esp-des esp-md5-hmac
crypto map mymap local-address FastEthernet0/1
crypto map mymap 10 ipsec-isakmp
set peer 10.99.99.2
set transform-set myset
match address 101
controller T1 1/0
interface Tunnel0
ip address 192.168.100.1 255.255.255.0
no ip directed-broadcast
ipx network BB
tunnel source FastEthernet0/0
tunnel destination 10.3.3.1
crypto map mymap
interface FastEthernet0/0
ip address 10.2.2.1 255.255.255.0
no ip directed-broadcast
duplex auto
speed auto
ipx network AA
interface FastEthernet0/1
ip address 10.1.1.2 255.255.255.0
no ip directed-broadcast
duplex auto
speed auto
crypto map mymap
ip classless
ip route 10.3.3.0 255.255.255.0 Tunnel0
ip route 10.3.3.1 255.255.255.255 10.1.1.1
ip route 10.99.99.0 255.255.255.0 10.1.1.1
no ip http server
access-list 101 permit gre host 10.2.2.1 host 10.3.3.1
line con 0
transport input none
line aux 0
line vty 0 4
```

```
!
no scheduler allocate
end
!--- Output Suppressed
```

PIX

```
pixfirewall# sh run
: Saved
PIX Version 7.0
hostname pixfirewall
enable password 2KFQnbNIdI.2KYOU encrypted
names
interface Ethernet0
nameif outside
security-level 0
ip address 10.99.99.1 255.255.255.0
interface Ethernet1
nameif inside
security-level 100
ip address 10.1.1.1 255.255.255.0
global (outside) 1 10.99.99.50-10.99.99.60
nat (inside) 1 0.0.0.0 0.0.0.0 0 0
static (inside, outside) 10.99.99.12 10.1.1.2 netmask
255.255.255.255 0 0
access-list 102 permit esp host 10.99.99.12 host
access-list 102 permit udp host 10.99.99.12 host
10.99.99.2 eq isakmp
route outside 0.0.0.0 0.0.0.0 10.99.99.2 1
route inside 10.2.2.0 255.255.255.0 10.1.1.2 1
```

!--- Output Suppressed

3660

```
version 12.4
service timestamps debug datetime
service timestamps log uptime
no service password-encryption
!
hostname 3660
!
memory-size iomem 30
ip subnet-zero
no ip domain-lookup
!
ipx routing 0030.80f2.2950
cns event-service server
!
crypto isakmp policy 10
hash md5
authentication pre-share
crypto isakmp key cisco123 address 10.99.99.12
```

```
crypto ipsec transform-set myset esp-des esp-md5-hmac
crypto map mymap local-address FastEthernet0/0
crypto map mymap 10 ipsec-isakmp
set peer 10.99.99.12
set transform-set myset
match address 101
interface Tunnel0
ip address 192.168.100.2 255.255.255.0
no ip directed-broadcast
ipx network BB
tunnel source FastEthernet0/1
tunnel destination 10.2.2.1
crypto map mymap
interface FastEthernet0/0
ip address 10.99.99.2 255.255.255.0
no ip directed-broadcast
ip nat outside
duplex auto
speed auto
crypto map mymap
interface FastEthernet0/1
ip address 10.3.3.1 255.255.255.0
no ip directed-broadcast
ip nat inside
duplex auto
speed auto
ipx network CC
ip nat pool 3660-nat 10.99.99.70 10.99.99.80 netmask
255.255.255.0
ip nat inside source list 1 pool 3660-nat
ip classless
ip route 0.0.0.0 0.0.0.0 Tunnel0
ip route 10.2.2.1 255.255.255.255 10.99.99.1
ip route 10.99.99.12 255.255.255.255 10.99.99.1
no ip http server
access-list 1 permit 10.3.3.0 0.0.0.255
access-list 101 permit gre host 10.3.3.1 host 10.2.2.1
line con 0
transport input none
line aux 0
line vty 0 4
login
!
!--- Output Suppressed
Périphérique 2513B
```

```
ipx routing 00e0.b063.e811
!
interface Ethernet0
  ip address 10.3.3.2 255.255.255.0
  no ip directed-broadcast
  ipx network CC
!
```

```
ip route 0.0.0.0 0.0.0.0 10.3.3.1
!--- Output Suppressed
```

Vérification

Cette section présente des informations que vous pouvez utiliser pour vous assurer que votre configuration fonctionne correctement.

Certaines commandes **show** sont prises en charge par l'<u>Output Interpreter Tool</u> (clients enregistrés uniquement), qui vous permet de voir une analyse de la sortie de la commande show.

- show crypto ipsec sa Affiche les associations de sécurité de phase 2.
- show crypto isakmp sa Affiche les connexions de session chiffrées actives actuelles pour tous les moteurs de chiffrement.
- Éventuellement : <u>show interfaces tunnel number</u> Affiche les informations d'interface de tunnel.
- <u>show ip route</u> Affiche toutes les routes IP statiques, ou celles installées à l'aide de la fonction de téléchargement de route AAA (authentification, autorisation et comptabilité).
- show ipx route Affiche le contenu de la table de routage IPX.

Dépannage

Cette section fournit des informations que vous pouvez utiliser pour dépanner votre configuration.

Dépannage des commandes

Certaines commandes **show** sont prises en charge par l'<u>Output Interpreter Tool</u> (clients enregistrés uniquement), qui vous permet de voir une analyse de la sortie de la commande show.

Note: Avant d'émettre des commandes **debug**, consultez <u>Informations importantes sur les commandes de débogage</u>.

- debug crypto engine Affiche le trafic chiffré.
- debug crypto ipsec Affiche les négociations IPSec de la phase 2.
- <u>debug crypto isakmp</u> Affiche les négociations de la phase 1 de l'ISAKMP (Internet Security Association and Key Management Protocol).
- Éventuellement : debug ip routing Affiche des informations sur les mises à jour de la table de routage RIP (Routing Information Protocol) et les mises à jour de la mémoire cache de route.
- debug ipx routing {activité | events} debug ipx routing {activité | events} Affiche des informations sur les paquets de routage IPX que le routeur envoie et reçoit.

Suppression des associations de sécurité (SA)

- clear crytpo ipsec sa Efface toutes les associations de sécurité IPSec.
- clear crypto isakmp Efface les associations de sécurité IKE.
- Éventuellement : <u>clear ipx route</u> * Supprime toutes les routes de la table de routage IPX.

Informations connexes

- Pages d'assistance produit IPSec (IP Security)
- Pages d'assistance GRE
- Support technique Cisco Systems