Configurer le chiffrement ASR1000 sur monodiffusion OTV

Contenu

Introduction Conditions préalables Conditions requises Components Used Informations générales Configuration Diagramme du réseau Configurations Vérification Dépannage

Introduction

Ce document décrit l'ensemble de configurations de base utilisées pour activer Overlay Transport Virtualization (OTV) avec le chiffrement IPSec. Le chiffrement sur OTV ne nécessite aucune configuration supplémentaire de l'extrémité OTV. Il vous suffit de comprendre comment OTV et IPSEC coexistent.

Pour ajouter le chiffrement sur OTV, vous devez ajouter un en-tête ESP (Encapsulating Security Payload) au-dessus de l'unité de données de protocole OTV. Vous pouvez réaliser le chiffrement sur les périphériques Edge ASR1000 (ED) de deux manières : i) IPSec ii) GETVPN.

Conditions préalables

Conditions requises

Aucune spécification déterminée n'est requise pour ce document.

Components Used

Les informations contenues dans ce document sont basées sur les versions de matériel et de logiciel suivantes :

- Routeurs ASR1000 pour périphériques Edge (ED)
- Noyau (cloud ISP)
- Commutateurs Catalyst 2960 comme commutateur d'accès sur l'un ou l'autre site

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. Si votre réseau est en ligne, assurez-vous de bien comprendre l'incidence possible des commandes.

Informations générales

Les fonctionnalités et configurations de base d'OTV sont supposées être connues des utilisateurs de ce document.

Vous pouvez également suivre ces documents pour la même raison :

- <u>Configuration de monodiffusion OTV</u>
- <u>Configuration de multidiffusion OTV</u>

Configuration

Diagramme du réseau

Configurations

Site A : Configurations ED :

Site_A_1#show run	Site_A_2#show run
Building configuration	Building configuration
otv site bridge-domain 99	otv site bridge-domain 99
!	!
otv site-identifier 0000.0000.0001	otv site-identifier 0000.0000.0001
crypto isakmp policy 10	crypto isakmp policy 10
hash md5	hash md5
authentication pre-share	authentication pre-share

```
crypto isakmp key cisco address 30.0.0.1
                                            crypto isakmp key cisco address 30.0.0.1
crypto isakmp key cisco address 40.0.0.1
                                            crypto isakmp key cisco address 40.0.0.1
!
                                             !
crypto ipsec transform-set tset esp-aes
                                            crypto ipsec transform-set tset esp-aes
esp-md5-hmac
                                            esp-md5-hmac
mode tunnel
                                             mode tunnel
                                             1
!
crypto map cmap 1 ipsec-isakmp
                                            crypto map cmap 2 ipsec-isakmp
set peer 30.0.0.1
                                             set peer 30.0.0.1
set transform-set tset
                                             set transform-set tset
match address cryptoacl
                                             match address cryptoacl2
crypto map cmap 3 ipsec-isakmp
                                            crypto map cmap 3 ipsec-isakmp
set peer 40.0.0.1
                                             set peer 40.0.0.1
set transform-set tset
                                             set transform-set tset
match address cryptoacl3
                                             match address cryptoacl3
!
                                             !
interface Overlay99
                                            interface Overlay99
no ip address
                                             no ip address
otv join-interface GigabitEthernet0/0/1
                                             otv join-interface GigabitEthernet0/0/1
otv adjacency-server unicast-only
                                             otv use-adjacency-server 10.0.0.1 30.0.0.1
                                            unicast-only
service instance 100 ethernet
                                             service instance 100 ethernet
encapsulation dot1q 100
                                             encapsulation dotlg 100
bridge-domain 100
                                             bridge-domain 100
 1
                                             1
 service instance 101 ethernet
                                             service instance 101 ethernet
encapsulation dotlq 101
                                             encapsulation dotlg 101
bridge-domain 101
                                             bridge-domain 101
1
                                             1
!
                                             Ţ
interface GigabitEthernet0/0/0
                                            interface GigabitEthernet0/0/0
no ip address
                                             no ip address
service instance 99 ethernet
                                            service instance 99 ethernet
encapsulation dot1g 99
```

```
bridge-domain 99
 Т
service instance 100 ethernet
encapsulation dotlq 100
bridge-domain 100
 !
service instance 101 ethernet
encapsulation dot1q 101
bridge-domain 101
 !
!
interface GigabitEthernet0/0/1
ip address 10.0.0.1 255.255.255.0
crypto map cmap
!
ip access-list extended cryptoacl
permit gre host 10.0.0.1 host 30.0.0.1
ip access-list extended cryptoacl3
permit gre host 10.0.0.1 host 40.0.0.1
```

```
encapsulation dot1q 99
bridge-domain 99
 !
service instance 100 ethernet
encapsulation dotlq 100
bridge-domain 100
 !
service instance 101 ethernet
encapsulation dotlq 101
bridge-domain 101
!
Т
interface GigabitEthernet0/0/1
ip address 20.0.0.1 255.255.255.0
crypto map cmap
!
ip access-list extended cryptoacl2
permit gre host 20.0.0.1 host 30.0.0.1
ip access-list extended cryptoacl3
permit gre host 20.0.0.1 host 40.0.0.1
```

Site B : Configurations ED :

```
Site_B_1#sh run
                                           Site_B_2#sh run
Building configuration...
                                           Building configuration...
otv site bridge-domain 99
                                           otv site bridge-domain 99
1
                                            !
otv site-identifier 0000.0000.0002
                                           otv site-identifier 0000.0000.0002
crypto isakmp policy 10
                                           crypto isakmp policy 10
hash md5
                                            hash md5
authentication pre-share
                                            authentication pre-share
crypto isakmp key cisco address 10.0.0.1
                                           crypto isakmp key cisco address 10.0.0.1
crypto isakmp key cisco address 20.0.0.1
                                           crypto isakmp key cisco address 20.0.0.1
```

!

!

crypto ipsec transform-set tset esp-aes crypto ipsec transform-set tset esp-aes esp-md5-hmac esp-md5-hmac mode tunnel mode tunnel ! ! crypto map cmap 1 ipsec-isakmp crypto map cmap 1 ipsec-isakmp set peer 10.0.0.1 set peer 10.0.0.1 set transform-set tset set transform-set tset match address cryptoacl match address cryptoacl crypto map cmap 2 ipsec-isakmp crypto map cmap 2 ipsec-isakmp set peer 20.0.0.1 set peer 20.0.0.1 set transform-set tset set transform-set tset match address cryptoacl2 match address cryptoacl2 ! 1 interface Overlay99 interface Overlay99 no ip address no ip address otv join-interface GigabitEthernet1/0/2 otv join-interface GigabitEthernet2/2/0 otv use-adjacency-server 10.0.0.1 unicast- otv use-adjacency-server 10.0.0.1 30.0.0.1 only unicast-only service instance 100 ethernet otv adjacency-server unicast-only service instance 100 ethernet encapsulation dotlq 100 encapsulation dotlq 100 bridge-domain 100 bridge-domain 100 1 1 service instance 101 ethernet service instance 101 ethernet encapsulation dotlg 101 encapsulation dotlg 101 bridge-domain 101 bridge-domain 101 1 1 Ţ interface GigabitEthernet2/2/1 1 interface GigabitEthernet1/0/3 no ip address no ip address service instance 99 ethernet service instance 99 ethernet encapsulation dotlg 99 encapsulation dot1q 99 bridge-domain 99

```
bridge-domain 99
```

```
Т
                                              service instance 100 ethernet
 service instance 100 ethernet
                                              encapsulation dotlg 100
encapsulation dotlq 100
                                             bridge-domain 100
bridge-domain 100
                                              !
 !
                                              service instance 101 ethernet
service instance 101 ethernet
                                              encapsulation dot1q 101
encapsulation dotlq 101
                                             bridge-domain 101
bridge-domain 101
                                              !
 !
                                             !
!
                                             interface GigabitEthernet2/2/0
interface GigabitEthernet1/0/2
                                              ip address 40.0.0.1 255.255.255.0
ip address 30.0.0.1 255.255.255.0
                                             crypto map cmap
crypto map cmap
                                             !
!
                                             ip access-list extended cryptoacl
ip access-list extended cryptoacl
                                             permit gre host 40.0.0.1 host 10.0.0.1
permit gre host 30.0.0.1 host 10.0.0.1
                                             ip access-list extended cryptoacl2
ip access-list extended cryptoacl2
                                             permit gre host 40.0.0.1 host 20.0.0.1
permit gre host 30.0.0.1 host 20.0.0.1
```

!

Vérification

Utilisez cette section pour confirmer que votre configuration fonctionne correctement.

- 1. Vérifiez si l'adresse MAC de l'hôte VLAN interne (dans ce cas, l'interface SVI du commutateur Catalyst 2960) a été apprise sur les tables de routage OTV.
- Vérifiez si les crypto encap et les decap sont effectués pour le trafic de superposition (trafic OTV).

Une fois que l'OTV s'affiche après avoir configuré la carte de chiffrement sur l'interface de jointure, vérifiez le redirecteur actif pour les VLAN locaux (dans ce cas les VLAN 100 et 101). Ceci montre que Site_A_1 et Site_B_2 sont les redirecteurs actifs des VLAN pairs puisque vous testerez le chiffrement du trafic pour les requêtes ping initiées à partir du VLAN 100 sur le Site A vers le VLAN 100 sur le Site B :

Overlay 99 VLAN Configuration Information

Inst	VLAN	BD	Auth ED	State	Site If(s)
0	100	100	*Site_A_1	active	Gi0/0/0:SI100
0	101	101	Site_A_2	inactive(NA)	Gi0/0/0:SI101
0	200	200	*Site_A_1	active	Gi0/0/0:SI200
0	201	201	Site_A_2	inactive(NA)	Gi0/0/0:SI201

Total VLAN(s): 4

Site_B_2#show otv vlan

Key: SI - Service Instance, NA - Non AED, NFC - Not Forward Capable.

Overlay 99 VLAN Configuration Information

Inst VLAN BD Auth ED		Auth ED	State	Site If(s)	
0	100	100	*Site_B_2	active	Gi2/2/1:SI100
0	101	101	Site_B_1	inactive(NA)	Gi2/2/1:SI101
0	200	200	*Site_B_2	active	Gi2/2/1:SI200
0	201	201	Site_B_1	inactive(NA)	Gi2/2/1:SI201

Total VLAN(s): 4

Afin de vérifier si les paquets sont effectivement encapsulés et décapsulés sur l'un ou l'autre ED, vous devez vérifier si la session IPSec est active et les valeurs de compteur dans les sessions de chiffrement afin de confirmer que les paquets sont effectivement cryptés et décryptés. Afin de vérifier si la session IPSec est active, puisqu'elle devient active uniquement si un trafic passe, vérifiez la sortie de **show crypto isakmp sa**. Ici, seules les sorties des redirecteurs actifs sont vérifiées, mais cela devrait indiquer l'état actif sur tous les ED pour que OTV sur le cryptage fonctionne.

Site_A_1#show crypto isakmp sa

IPv4 Crypto ISAKMP SA

dst	src	state	conn-id status		
10.0.0.1	30.0.0.1	QM_IDLE	1008 ACTIVE		
10.0.0.1	40.0.0.1	QM_IDLE	1007 ACTIVE		
Site_B_2#sh crypto isakmp sa					
IPv4 Crypto ISAN	KMP SA				
dst	src	state	conn-id status		
20.0.0.1	40.0.0.1	QM_IDLE	1007 ACTIVE		
10.0.0.1	40.0.0.1	QM_IDLE	1006 ACTIVE		

Maintenant, afin de confirmer si les paquets sont cryptés et décryptés, vous devez d'abord savoir à quoi vous attendre dans les sorties de **show crypto session detail**. Ainsi, lorsque vous lancez le paquet d'écho ICMP à partir du commutateur Sw_A vers le commutateur Sw_B, ceci est attendu :

- Bien que l'écho ICMP quitte le site A_1 ED qui est le redirecteur actif pour le VLAN 100, il devra encapsuler la charge utile OTV (ICMP Echo + MPLS + GRE)
- Ensuite, une fois que l'écho ICMP atteint le site B_2 ED qui est le redirecteur actif pour VLAN 100, il devra décapsuler la charge utile OTV (ICMP Echo + MPLS + GRE)
- Maintenant, une fois que le Site_B_2 ED reçoit la réponse d'écho ICMP de Sw_B, il doit à nouveau encapsuler la charge utile OTV (ICMP Echo + MPLS + GRE)
- Et une fois que la réponse d'écho ICMP atteint le site A_1 ED, je devrais à nouveau décapsuler la charge utile OTV (ICMP Echo + MPLS + GRE)

Après les requêtes ping réussies de Sw_A à Sw_B, attendez-vous à voir un incrément de 5 compteurs sous la section « enc " et " dec " de la sortie **show crypto session detail** sur les deux ED du redirecteur actif.

Maintenant, vérifiez la même chose à partir des ED :

Site_A_1(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 0 drop 0 life (KB/Sec) 4608000/3345

Outbound: #pkts enc'ed 10 drop 0 life (KB/Sec) 4607998/3291 <<<< 10 counter before ping

Site_A_1(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 0 drop 0 life (KB/Sec) 4608000/3343

Inbound: #pkts dec'ed 18 drop 0 life (KB/Sec) 4607997/3289 <<<< 18 counter before ping

Site_B_2(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 18 drop 0 life (KB/Sec) 4607997/3295 <<<< 18 counter before ping

Outbound: #pkts enc'ed 9 drop 0 life (KB/Sec) 4607999/3295

Site_B_2(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 10 drop 0 life (KB/Sec) 4607998/3293 <<<< 10 counter before ping
Inbound: #pkts dec'ed 1 drop 0 life (KB/Sec) 4607999/3293</pre>

Sw_A(config)#do ping 192.168.10.1 source vlan 100

Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.10.1, timeout is 2 seconds:

Packet sent with a source address of 192.168.10.2

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/10 ms

Sw_A(config)#

Site_A_1(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 0 drop 0 life (KB/Sec) 4608000/3339

Outbound: #pkts enc'ed 15 drop 0 life (KB/Sec) 4607997/3284 <<<< 15 counter after ping (After ICMP Echo)

Site_A_1(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 0 drop 0 life (KB/Sec) 4608000/3338

Inbound: #pkts dec'ed 23 drop 0 life (KB/Sec) 4607997/3283 <<<< 23 counter after ping
(After ICMP Echo Reply)</pre>

Site_B_2(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: **#pkts enc'ed 23 drop 0 life (KB/Sec) 4607997/3282** <<<< 23 counter after ping (After ICMP Echo Reply)

Outbound: #pkts enc'ed 9 drop 0 life (KB/Sec) 4607999/3282

Site_B_2(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 15 drop 0 life (KB/Sec) 4607997/3281 <<<< 15 counter after ping
(After ICMP Echo)</pre>

Inbound: #pkts dec'ed 1 drop 0 life (KB/Sec) 4607999/3281 Ce guide de configuration est capable de transmettre les détails de configuration requis avec l'utilisation d'IPSec pour la configuration à double résidence principale de monodiffusion.

Dépannage

Il n'existe actuellement aucune information de dépannage spécifique pour cette configuration.