Problèmes de débit sur les routeurs de la gamme ASR1000

Contenu

Introduction Conditions préalables Conditions requises **Components Used Conventions Problème** Solution Scénario 1. Interface(s) d'entrée de bande passante élevée et interface(s) de sortie de bande passante faible Scénario 2. Congestion au niveau du périphérique de tronçon suivant et contrôle de flux d'interface activé Scénario 3. Débit de trafic supérieur ou égal à la capacité de transfert du routeur Dépannage des commandes Afficher la plate-forme show interface Récapitulatif de l'utilisation active du chemin de données QFP matériel de la plate-forme Show Platform Afficher le résumé de l'interface Afficher le port matériel de la plate-forme

Introduction

Ce document décrit la procédure permettant d'identifier si la perte de paquets sur un routeur ASR1000 est due à la capacité maximale de ses unités remplaçables sur site (FRU). La connaissance de la capacité de transfert du routeur permet de gagner du temps car elle élimine le besoin de dépanner les paquets ASR1000 de longue durée.

Conditions préalables

Conditions requises

Aucune spécification déterminée n'est requise pour ce document.

Components Used

Les informations contenues dans ce document sont basées sur les versions de matériel et de logiciel suivantes :

• Tous les routeurs à services d'agrégation de la gamme Cisco ASR 1000, qui incluent les

plates-formes 1001, 1002, 1004, 1006 et 1013

• Version du logiciel Cisco IOS®-XE prenant en charge les routeurs à services d'agrégation de la gamme Cisco ASR 1000

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Pour plus d'informations sur les conventions utilisées dans ce document, reportez-vous à <u>Conventions relatives aux conseils techniques Cisco.</u>

Problème

La plate-forme de routeur de la gamme ASR1000 est une plate-forme de routeur centralisée, ce qui signifie que tous les paquets reçus par le routeur doivent atteindre un moteur de transfert centralisé avant de pouvoir être envoyés. La carte de transfert centralisée est appelée processeur de service intégré (ESP). Le module ESP du châssis détermine la capacité de transfert du routeur. Les adaptateurs de port partagé (SPA) qui reçoivent des paquets de la ligne ou les envoient à la ligne sont connectés à la carte ESP via une carte porteuse appelée SIP (SPA Interface Processors). La capacité totale de bande passante du SIP détermine la quantité de trafic envoyée à et en provenance du protocole ESP.

Une erreur de calcul de la capacité du routeur pour la configuration matérielle utilisée (combinaison ESP et SIP) peut conduire à des conceptions de réseau où le routeur de la gamme ASR1000 ne parvient pas à transférer les paquets au débit de ligne.

Solution

Cette section décrit trois scénarios pouvant entraîner une perte de paquets sur un routeur de la gamme ASR1000. La section suivante fournit l'interface de ligne de commande (CLI) qui détecte si le routeur est touché par l'un desces scénarios.

Scénario 1. Interface(s) d'entrée de bande passante élevée et interface(s) de sortie de bande passante faible

Exemples :

- Trafic reçu sur deux interfaces Gig et transmis sur une interface Gig
- Trafic reçu sur 10 Gig et transmis sur une interface Gig

La carte SIP prend en charge la classification et la mise en mémoire tampon des paquets d'entrée afin de permettre la sursouscription. Identifier les interfaces d'entrée et de sortie pour le flux de trafic. Si le routeur dispose d'une liaison d'entrée à bande passante élevée qui reçoit des paquets au débit de ligne et d'une liaison de sortie à bande passante faible, cela entraîne la mise en mémoire tampon au niveau du SIP d'entrée.

Le trafic de débit de ligne entrant soutenu dans ces scénarios sur une période de temps entraîne l'épuisement des tampons et le routeur commence à abandonner les paquets. Ces manifestes

comme **ignorés** ou **en entrée sur les sous-débranchements** dans la sortie de **show interface <nominterface> x/x/x controller** sur l'interface d'entrée.

• La solution dans ce scénario consiste à étudier le flux de trafic dans le réseau et à le distribuer en fonction de la capacité de liaison.

Note: Le SIP prend en charge la classification des paquets d'entrée, ce qui permet aux paquets de priorité élevée d'être toujours transférés (tant qu'ils ne sont pas sur-abonnés) et que les paquets non critiques sont abandonnés.

La classification d'entrée et la planification des paquets sur les routeurs ASR1000 sont expliquées dans la liaison.

Classification et planification des paquets sur ASR1000

Scénario 2. Congestion au niveau du périphérique de tronçon suivant et contrôle de flux d'interface activé

Exécutez la sortie **show interface** sur l'interface de sortie pour vérifier si le contrôle de flux est activé et si l'interface reçoit des entrées de pause du périphérique de tronçon suivant. Les entrées de pause indiquent que le périphérique de tronçon suivant est congestionné. Les trames de pause d'entrée avertissent l'ASR1000 de ralentir, ce qui entraîne la mise en mémoire tampon des paquets sur l'ASR1000. Cela entraîne en fin de compte des abandons de paquets si le débit de trafic est élevé et soutenu sur une période de temps.

• L'ASR1000 n'est pas défectueux dans ce scénario et la solution consiste à supprimer le goulot d'étranglement dans le périphérique de tronçon suivant. Comme les pertes sont visibles sur le routeur, il est fort probable que les ingénieurs réseau ignorent le périphérique nexthop et que tous les efforts de dépannage peuvent être effectuéssur le routeur.

Scénario 3. Débit de trafic supérieur ou égal à la capacité de transfert du routeur

Exécutez la commande **show platform** pour identifier l'ESP et le type SIP dans le châssis. ASR1000 a un fond de panier passif ; le débit du système est déterminé par le type d'ESP et de SIP utilisés dans le système.

Exemple :

- Les références ASR1000-ESP5, ASR1000-ESP20, ASR1000-ESP40, ASR1000-ESP100 et ASR1000-ESP200 peuvent gérer 5G, 2 Trafic de 0 G, 40 G, 100 G et 200 G. La bande passante ESP indique la bande passante de sortie totale du système, quelle que soit la direction.
- Les références ASR-1000-SIP10 et ASR-1000-SIP40 fournissent 10G et 40G de bande passante totale par logement. Le trafic livré à l'ESP par une carte SIP10 avec ses deux sous-logements équipés de deux cartes SPA-1X10GE-L-V2 est déterminé par la bande passante SIP10 et non par le trafic de débit de ligne 20G reçu par les deux SPA 10GE.

Le débit d'un routeur ASR1000 doté d'une ESP10 est illustré dans l'image

- 5G Unicast in each direction
- Total Output bandwidth 5+5=10

- 5G Unicast in one direction and 6G Unicast in the other direction
- Total output bandwidth (5+6=11) exceeds 10G; only 10G will go through

- 1G Multicast with 8X replication in one direction
- 2G unicast in the other direction
- Total Output bandwidth 8+2=10G

- 1G Multicast with 10X replication in one direction
- 1G Unicast in the other direction
- Total bandwidth (10+1=11) exceeds 10G; only 10G will go through

Exécutez la commande **show interface summary** pour vérifier le trafic total qui traverse le routeur. La colonne Taux de données reçues (RXBS) et Taux de données de transmission (TXBS) indique le taux total d'entrée et de sortie.

Exécutez le **récapitulatif d'utilisation du chemin de données actif qfp matériel de la plate-forme** pour vérifier la charge sur l'ESP. Si l'ESP est surchargé, alors il fait reculer la carte SIP d'entrée pour ralentir et commencer à mettre en mémoire tampon, ce qui conduit à la perte de paquets si le taux élevé est taché sur une plus longue période.

Les actions à suivre dans ce scénario sont les suivantes :

- Mettez à niveau la carte ESP si les limites ESP sont atteintes.
- Vérifiez les limites d'échelle des fonctionnalités configurées sur le routeur si l'utilisation du chemin de données ESP est élevée et que le débit de trafic est inférieur aux limites ESP.
- Assurez-vous que la bonne combinaison de cartes ESP et SIP est utilisée pour le flux de trafic qui traverse le routeur.

Dépannage des commandes

Si les commandes de dépannage indiquent que le routeur n'est pas affecté par les scénarios expliqués, passez au dépannage ASR1000 par transfert de paquets.

Suppressions de paquets sur les routeurs de service de la gamme Cisco ASR 1000

Voici un ensemble de commandes utiles :

- show platform
- show interface <nom de l'interface> <slot/card/port> controller
- show interface summary
- show platform hardware qfp active datapath utilisation summary
- show platform hardware port <slot/card/port> paramètres de tampon de module
- show platform hardware port <slot/card/port> détails des paramètres de tampon de module

Dans cet exemple, le trafic est reçu sur TenGigEthernet 0/2/0 et transmis sur TenGigEthernet0/1/0. Les sorties sont capturées à partir d'un routeur ASR1002 chargé

Afficher la plate-forme

Exécutez les sorties show platform afin d'identifier la capacité de l'ESP et de la carte SIP. Dans cet exemple, la capacité totale de transfert (capacité de sortie maximale) du routeur est de 5G et est déterminée par la capacité ESP.

----- show platform -----

Chassis	type:	ASR1002	

Slot	Туре	State	Insert time (ago)
0	ΔSR1002-STD10		 3xz45w
0/0	4XGE-BUILT-IN	ok	3y45w
0/1	SPA-1X10GE-L-V2	ok	3y45w
0/2	SPA-1X10GE-L-V2	ok	3y45w
R0	ASR1002-RP1	ok, active	3y45w
FO	ASR1000-ESP5	ok, active	3y45w
PO	ASR1002-PWR-AC	ok	3y45w
P1	ASR1002-PWR-AC	ok	3y45w
Slot	CPLD Version	Firmware Version	
0	07120202	12.2(33r)XNC	
R0	08011017	12.2(33r)XNC	
FO	07091401	12.2(33r)XNC	

show interface

Les abandons d'entrée sur abonnement indiquent une mise en mémoire tampon dans le SIP d'entrée et indiquent que le moteur de transfert ou le chemin de sortie est encombré. L'état du contrôle de flux indique si le routeur traite les trames de pause reçues ou envoie des trames de pause en cas d'encombrement.

Router#sh int Te0/2/0 controller TenGigabitEthernet0/2/0 is up, line protocol is up Hardware is SPA-1X10GE-L-V2, address is d48c.b52e.e620 (bia d48c.b52e.e620) Description: Connection to DET LAN Internet address is 10.10.101.10/29 MTU 1500 bytes, BW 10000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 8/255, rxload 67/255

Encapsulation ARPA, loopback not set Keepalive not supported Full Duplex, 10000Mbps, link type is force-up, media type is 10GBase-SR/SW output flow-control is on, input flow-control is on ARP type: ARPA, ARP Timeout 04:00:00 Last input 00:06:33, output 00:00:35, output hang never Last clearing of "show interface" counters 1d18h Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 2649158000 bits/sec, 260834 packets/sec 5 minute output rate 335402000 bits/sec, 144423 packets/sec 15480002600 packets input, 18042544487535 bytes, 0 no buffer Received 172 broadcasts (0 IP multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 257 multicast, 0 pause input 10759162793 packets output, 4630923784425 bytes, 0 underruns 0 output errors, 0 collisions, 0 interface resets 0 unknown protocol drops 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 pause output 0 output buffer failures, 0 output buffers swapped out TenGigabitEthernet0/2/0 0 input vlan errors 444980 ingress over sub drops 0 Number of sub-interface configured vdevburr01c10#

Récapitulatif de l'utilisation active du chemin de données QFP matériel de la plateforme Show Platform

Cette commande indique la charge sur l'ESP. Si la ligne Traitement : La charge a des valeurs élevées, elle indique que l'utilisation de ESP est élevée et doit être dépannée plus avant pour voir si elle est causée par des fonctions configurées sur le routeur ou un débit de trafic élevé.

Router0#show platform hardware qfp active datapath utilization						
CPP 0			5 secs	1 min	5 min	60 min
Input:	Priority	(pps)	1073	921	1048	1203
		(bps)	1905624	1772832	1961560	2050136
Non-	-Priority	(pps)	491628	407831	415573	373270
		(bps)	3536432120	2962683416	3051102376	2652122448
	Total	(pps)	492701	408752	416621	374473
		(bps)	3538337744	2964456248	3053063936	2654172584
Output:	Priority	(pps)	179	170	124	181
		(bps)	535864	509792	370408	540416
Non-	-Priority	(pps)	493706	409239	417159	374982
		(bps)	3545612320	2967293504	3056172104	2657838152
	Total	(pps)	493885	409409	417283	375163
		(bps)	3546148184	2967803296	3056542512	2658378568
Process	ing: Load	(pct)	17	46	38	36

Afficher le résumé de l'interface

Le champ TXBS indique le trafic de sortie total sur le routeur. Dans cet exemple, le trafic de sortie total est de 3,1G (2680945000 + 372321000 = 3053266000).

*: IHQ OHQ RXE TXE TRI	interface is up 2: pkts in input hold 2: pkts in output hold 3S: rx rate (bits/sec) 3S: tx rate (bits/sec) TL: throttle count	queue I queue O R T	IQD: pkts dropped from input queue OQD: pkts dropped from output queue RXPS: rx rate (pkts/sec) TXPS: tx rate (pkts/sec)					
Ir TXPS	nterface S TRTL	IHQ	IQD	OHQ	OQD	RXBS	RXPS	TXBS
 Gi	 igabitEthernet0/0/0	0	0	0	0	0	0	0
0	0	Ũ	Ū	Ū	Ū	Ū.	Ū	Ũ
Gi	igabitEthernet0/0/1	0	0	0	0	0	0	0
0	0							
Gi	lgabitEthernet0/0/2	0	0	0	0	0	0	0
0	0							
Gi	lgabitEthernet0/0/3	0	0	0	0	0	0	0
0	0							
* Te	≥0/1/0	0	0	0	0 383	941000	152887 26	80945000
2656	568 0							
* Te	2/2/0	0	0	0	0 254	1026000	254046 3	72321000
1475	526 0							
Gi	lgabitEthernet0	0	0	0	0	0	0	0
0	0							
* Lo	popback0	0	0	0	0	0	0	0
0	0							

Show Platform Hardware Port <slot/card/port> Plim Buffer Settings

Utilisez cette commande pour vérifier l'état de remplissage de la mémoire tampon sur le PLIM. Si la valeur Curr est proche de Max, elle indique que les tampons PLIM sont remplis.

```
Router#Show platform hardware port 0/2/0 plim buffer settings
Interface 0/2/0
 RX Low
   Buffer Size 28901376 Bytes
   Drop Threshold 28900416 Bytes
   Fill Status Curr/Max 0 Bytes / 360448 Bytes
 TX Low
   Interim FIFO Size 192 Cache line
   Drop Threshold 109248 Bytes
   Fill Status Curr/Max 1024 Bytes / 2048 Bytes
 RX High
   Buffer Size 4128768 Bytes
   Drop Threshold 4127424 Bytes
   Fill Status Curr/Max 1818624 Bytes / 1818624 Bytes
 TX High
   Interim FIFO Size 192 Cache line
   Drop Threshold 109248 Bytes
   Fill Status Curr/Max 0 Bytes / 0 Bytes
Router#Show platform hardware port 0/2/0 plim buffer settings detail
Interface 0/2/0
 RX Low
   Buffer Size 28901376 Bytes
   Fill Status Curr/Max 0 Bytes / 360448 Bytes
   Almost Empty TH0/TH1 14181696 Bytes / 14191296 Bytes
   Almost Full TH0/TH1 28363392 Bytes / 28372992 Bytes
   SkipMe Cache Start / End Addr 0x0000A800 / 0x00013AC0
```

Buffer Start / End Addr 0x01FAA000 / 0x03B39FC0 TX Low Interim FIFO Size 192 Cache line Drop Threshold 109248 Bytes Fill Status Curr/Max 1024 Bytes / 2048 Bytes Event XON/XOFF 49536 Bytes / 99072 Bytes Buffer Start / End Addr 0x00000300 / 0x000003BF RX High Buffer Size 4128768 Bytes Fill Status Curr/Max 1818624 Bytes / 1818624 Bytes Almost Empty TH0/TH1 1795200 Bytes / 1804800 Bytes Almost Full TH0/TH1 3590400 Bytes / 3600000 Bytes SkipMe Cache Start / End Addr 0x00013B00 / 0x00014FC0 Buffer Start / End Addr 0x03B3A000 / 0x03F29FC0 TX High Interim FIFO Size 192 Cache line Drop Threshold 109248 Bytes Fill Status Curr/Max 0 Bytes / 0 Bytes Event XON/XOFF 49536 Bytes / 99072 Bytes Buffer Start / End Addr 0x000003C0 / 0x0000047F