Configuration de l'anneau à jeton et des VLAN Ethernet sur Catalyst 5000 à l'aide d'un RSM

Contenu

Introduction Conditions préalables Conditions requises Components Used Conventions Théorie générale Configuration Configuration Configuration de Token Ring avec RSM pour SRB et Multiring pour IP Communication entre les VLAN Ethernet et Token Ring sur le même commutateur Vérification Dépannage Informations connexes

Introduction

Ce document explique comment configurer la commutation Token Ring sur le Catalyst 5000 et le module de commutation de route (RSM). En particulier, ce document se concentre sur la configuration du Catalyst 5000 avec le RSM pour router l'IP dans un environnement ponté de route source, ainsi que sur les étapes impliquées. Il fournit également un exemple de configuration pour la communication entre un VLAN Ethernet et un VLAN Token Ring via le RSM. Ce document traite également de certaines des commandes **show** les plus fréquemment utilisées.

Conditions préalables

Conditions requises

Cisco vous recommande de prendre connaissance des rubriques suivantes :

- Concepts de commutation Token Ring, notamment TrBRF (Token Ring Bridge Relay Function) et TrCRF (Token Ring Concentrator Relay Function).
- Comment configurer et gérer les routeurs et les commutateurs Cisco.

Components Used

Les informations contenues dans ce document sont basées sur les versions de matériel et de logiciel suivantes :

• Catalyst 5505 avec le logiciel Supervisor Engine III version 4.5(6), avec ceux-ci installés :Module de commutation de route avec le logiciel Cisco IOS® Version 12.1(2) avec jeu de fonctions IBMLame Ethernet avec logiciel version 4.5(6)Lame Token Ring avec version logicielle 3.3(2)

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Pour plus d'informations sur les conventions utilisées dans ce document, reportez-vous à <u>Conventions relatives aux conseils techniques Cisco.</u>

Théorie générale

Contrairement aux VLAN Ethernet, où un VLAN représente effectivement un segment Ethernet physique (par exemple, un domaine de diffusion), la commutation Token Ring utilise plusieurs VLAN par domaine de diffusion. Le concept central est le VLAN TrBRF (Token Ring Bridge Relay Function). Il s'agit d'un VLAN qui représente la fonctionnalité de pontage dans un réseau Token Ring. Sous ce TrBRF, ou pont, vous configurez un ou plusieurs VLAN TrCRF (Token Ring Concentrator Relay Function). Elles sont analogues aux anneaux physiques d'un réseau Token Ring. Dans le cadre de la définition, un numéro de sonnerie unique doit être attribué à chacun.

Les périphériques finaux situés sur différents TrCRF peuvent communiquer entre eux sans pont ou routeur externe via la fonctionnalité de pontage du TrBRF. Un commutateur peut être configuré avec plusieurs VLAN TrBRF, chacun avec ses VLAN TrCRF associés. Cependant, pour la communication entre les TrBRF, un périphérique externe tel qu'un routeur est nécessaire.

Le VLAN TrBRF peut être configuré de deux manières : soit en tant que pont transparent, soit en tant que pont de route source. Les commutateurs Token Ring standard étant installés dans les magasins IBM qui utilisent déjà le pontage SRB (Source Route Bridging), la configuration la plus courante du TrBRF est en tant que pont de route source.

Les VLAN Token Ring, comme les VLAN Ethernet, doivent exécuter un algorithme Spanning Tree pour éviter les boucles. Cependant, contrairement aux VLAN Ethernet, ils doivent exécuter deux instances de ceci, l'une au niveau TrBRF et l'autre au niveau TrCRF.

Si le TrBRF fonctionne en tant que pont transparent (**mode srt** lorsque vous configurez les TrCRF dépendants), il doit alors être configuré pour exécuter IEEE en tant que protocole Spanning Tree au niveau TrBRF (**stp ieee**).

Si le TrBRF fonctionne en tant que pont de route source (**mode srb** lors de la configuration des TrCRF dépendants), il doit alors être configuré pour exécuter IBM en tant que protocole Spanning Tree au niveau TrBRF (**stp ibm**).

Le protocole Spanning Tree qui s'exécute au niveau TrCRF est automatiquement choisi en fonction du mode de pontage. Si le mode de pontage est SRB (par exemple, le TrBRF exécute le protocole IBM Spanning Tree), le protocole IEEE Spanning Tree est exécuté au niveau TrCRF. Si le mode de pontage est Pontage transparent (le TrBRF exécute déjà le protocole Spanning Tree IEEE, par exemple), le protocole Spanning Tree exécuté au niveau du TrCRF est CISCO.

Pour plus d'informations sur le concept de TrBRF et TrCRF, référez-vous à <u>Concepts de</u> <u>commutation Token Ring</u>.

Configuration

Cette section vous fournit des informations pour configurer les fonctionnalités décrites dans ce document.

Remarque : Utilisez <u>l'outil de recherche de commandes</u> (clients <u>inscrits</u> seulement) pour en savoir plus sur les commandes figurant dans le présent document.

Avant de pouvoir configurer des VLAN Token Ring, tous les commutateurs Token Ring du domaine doivent exécuter le protocole VTP (VLAN Trunking Protocol) V2. Afin d'éviter une interruption du domaine VTP existant, vous devez configurer les nouveaux commutateurs ajoutés en mode transparent ou en mode client à l'aide de cette commande :

set vtp domain cisco mode transparent V2 enable

Pour plus d'informations sur VTP, référez-vous à <u>Configuration de VTP</u>. Le mode par défaut est **serveur**.

Configurez ensuite le ou les VLAN TrBRF sur le commutateur. Dans cet exemple, deux TrBRF distincts sont configurés en tant que ponts de route source, car il s'agit du type de configuration le plus courant.

 Créez les VLAN TrBRF sur le commutateur. Il s'agit du parent des VLAN TrCRF auxquels sont affectés des ports avec des périphériques finaux connectés. Remarque : Étant donné que vous effectuez le pontage de route source, le protocole Spanning Tree est défini sur ibm.

set vlan 100 type trbrf name test_brf bridge 0xf stp ibm set vlan 200 type trbrf name test_brf2 bridge 0xf stp ibm

 Créez les VLAN TrCRF. Remarque : le mode est défini sur SRB et le numéro d'anneau peut être entré en notation hexadécimale ou décimale, comme indiqué dans l'exemple suivant. Cependant, lorsque vous affichez les configurations, le commutateur les affiche au format hexadécimal.

```
set vlan 101 type trcrf name test_crf101 ring 0x64 parent 100 mode srb
!--- All rings in hexadecimal. set vlan 102 type trcrf name test_crf102 ring 0x65 parent
100 mode srb
set vlan 103 type trcrf name test_crf103 ring 0x66 parent 100 mode srb
set vlan 201 type trcrf name test_crf201 decring 201 parent 200 mode srb
!--- All rings in decimal. set vlan 202 type trcrf name test_crf202 decring 202 parent 200
mode srb
set vlan 203 type trcrf name test_crf203 decring 203 parent 200 mode srb
```

3. Attribuez les VLAN aux ports destinés au réseau du commutateur. Attribuez les ports aux VLAN CRF de la même manière que les ports Ethernet sont attribués. Par exemple, ici, vous affectez les ports 8/1-4 au VLAN 101, qui est le numéro de sonnerie 100 (0x64). Comme le VLAN par défaut pour tous les ports Token Ring est 1003, de la même manière que le VLAN 1 est le VLAN par défaut pour tous les ports Ethernet, le VLAN 1003 est également modifié. ptera-sup (enable) set vlan 101 8/1-4

Une fois que vous avez affecté tous les ports Token Ring requis aux VLAN TrCRF, vous avez terminé la configuration du commutateur. Les périphériques dans les TrCRF sous le même VLAN peuvent désormais établir un pont de route entre eux.

Pour la connectivité IP, car il s'agit d'un environnement ponté, tous les périphériques finaux doivent faire partie du même réseau IP. Cependant, comme le TrBRF fonctionne comme un pont de route source, les routeurs connectés à différents TrCRF nécessitent l'option multi-ring, pour mettre en cache et utiliser le champ RIF (Routing Information Field).

Par exemple, un routeur externe connecté à TrCRF 101 aurait son interface Token Ring configurée comme suit :

source-bridge ring-group 2000
!
interface token-ring 0
ip address 1.1.1.10 255.255.255.0
multiring all
source-bridge 100 1 2000
!--- The ring number is 100, to match CRF 101 ring number; !--- and 2000 is the virtual ring
number of the router. source-bridge spanning

Configuration de Token Ring avec RSM pour SRB et Multiring pour IP

Si vous routez l'adresse IP dans un réseau ponté de route source, vous devez ajouter plusieurs anneaux à votre configuration et configurer le pontage de route source. En effet, avec le RSM, vous étendez le pont du commutateur au RSM, et vous devez créer un pseudo-anneau que le code à plusieurs anneaux ajoute au RIF. Vous créez ce pseudo-anneau lorsque vous créez un TrCRF sous le TrBRF parent qui est affecté dans le RSM sous le code à plusieurs anneaux.

Comme vous devez également configurer le pontage de route source pour le RSM, vous devez lier le VLAN d'interface à l'anneau virtuel du RSM. Ceci est fait lorsque vous créez un TrCRF sous chaque TrBRF avec un numéro d'anneau qui correspond à celui de l'anneau virtuel dans le RSM. En fait, vous pouvez utiliser le même TrCRF à des fins de pontage de routes sources et à plusieurs anneaux, à condition qu'ils aient le même numéro d'anneau. Reportez-vous au schéma suivant :

Dans cet exemple, vous allez configurer le RSM en tant qu'anneau virtuel 1000 avec la commande globale **source-bridge ring-group 1000**.

1. Configurez les pseudo-TrCRF correspondants sur le commutateur, un pour chaque TrBRF, avec les commandes suivantes :

set vlan 104 type trcrf name test_crf104 decring 1000 parent 100 mode srb set vlan 204 type trcrf name test_crf204 decring 1000 parent 200 mode srb

Remarque : Les numéros de sonnerie des TrCRF ci-dessus doivent correspondre à l'anneau virtuel dans le RSM, 1000. En outre, aucun port n'est attribué aux pseudo-TrCRF. Les ports physiques sont affectés à TrCRF 101 et 201, comme indiqué dans l'exemple de l'étape 3 de la section <u>Configurer</u> principale de ce document.

2. Ajoutez une commande **interface vlan** dans le RSM pour chaque TrBRF configuré sur le commutateur :

```
interface vlan100 type trbrf
interface vlan200 type trbrf
```

3. Ajoutez les commandes de pontage à plusieurs anneaux et de route source aux interfaces VLAN.Elles indiquent au routeur quel VLAN TrCRF a été attribué pour être mappé sur l'anneau virtuel du routeur. Dans cet exemple de document, ce sont les VLAN 104 et 204, tous deux avec un numéro d'anneau de 1000 qui correspondent au groupe d'anneau du routeur.Vous devez également ajouter des adresses IP pour acheminer le trafic IP, afin de terminer avec cette configuration :

```
source-bridge ring-group 1000
!
interface vlan100 type trbrf
```

```
ip address 1.1.1.1 255.255.255.0
multiring trcrf-vlan 104 ring 1000
multiring all
source-bridge trcrf-vlan 104 ring-group 1000
source-bridge spanning
!
interface Vlan200 type trbrf
ip address 1.1.2.1 255.255.255.0
multiring trcrf-vlan 204 ring 1000
multiring all
source-bridge trcrf-vlan 204 ring-group 1000
source-bridge spanning
!
```

Remarque : les configurations de protocole IP ne sont pas présentées dans cet exemple, pour plus de simplicité.

Communication entre les VLAN Ethernet et Token Ring sur le même commutateur

Vous pouvez configurer des VLAN Token Ring et Ethernet sur le même commutateur, mais vous pouvez uniquement envoyer du trafic entre eux avec un RSM ou un routeur externe.

Si vous avez déjà configuré le commutateur et le RSM comme décrit précédemment dans ce document, vous pouvez ajouter un VLAN Ethernet et configurer la traduction de pont source sur le RSM, pour relier le trafic entre les deux supports :

1. Configurez le VLAN Ethernet et affectez-lui des ports à l'aide de la commande set vlan : ptera-sup (enable) set vlan 500 3/1-5

2. Configurez l'interface VLAN sur le RSM et placez-la dans un groupe de ponts transparent :

interface vlan 500 bridge-group 1

bridge 1 protocol ieee

3. Configurez la traduction de pont source à l'aide de la commande source-bridge transparent ring-group pseudo-ring bridge-number tb-group où :ring-group est l'anneau virtuel de groupe d'anneau de pont source configuré sur le RSM. Dans ce cas, c'est 1000.pseudo-ring est le numéro d'anneau qui va être attribué à ce domaine de pontage transparent. Vous pouvez choisir n'importe quel numéro, mais il doit être unique de la même manière que les vrais numéros de sonnerie doivent être uniques dans un réseau ponté de route source. Dans l'exemple précédent, le numéro de sonnerie est 3000.bridge-number est le numéro de pont utilisé pour former le RIF dans les trames qui proviennent du groupe de pontage transparent et sont envoyées au réseau ponté de route source. Dans ce cas, vous utilisez 1.tb-group est le numéro de groupe de ponts transparent. Dans ce cas, il s'agit de 1.

```
interface vlan100 type trbrf
    ip address 1.1.1.1 255.255.255.0
    multiring trcrf-vlan 104 ring 1000
    multiring all
    source-bridge trcrf-vlan 104 ring-group 1000
    source-bridge spanning
    !
interface Vlan200 type trbrf
    ip address 1.1.2.1 255.255.255.0
    multiring trcrf-vlan 204 ring 1000
    multiring all
    source-bridge trcrf-vlan 204 ring-group 1000
    source-bridge spanning
    1
interface vlan 500
 ip address 1.1.3.1 255.255.255.0
 bridge-group 1
bridge 1 protocol ieee
```

Remarque : Dans ce scénario, l'adresse IP est routée et non pontée.

Vérification

Référez-vous à cette section pour vous assurer du bon fonctionnement de votre configuration.

L'<u>Outil Interpréteur de sortie (clients enregistrés uniquement) (OIT) prend en charge certaines</u> <u>commandes show.</u> Utilisez l'OIT pour afficher une analyse de la sortie de la commande **show**.

show vlan : sur le commutateur, vous pouvez vérifier quels VLAN sont configurés, le mode de pontage et le Spanning Tree.

VLAN	Name	Status	IfIndex	Mod/Ports	VLAN	3		
1	default	active	3	3/6-24 6/1-24 10/1-12				
100	test_brf	active	8	8 105	101,	102,	103,	104
101	test_crf101	active	10	8/1-4				
102	test_crf102	active	11					
103	test_crf103	active	12					
104	test_crf104	active	13					
105	test_crf105	active	14					
200	test_brf2	active	9	9	201,	202,	203,	204
				205				
201	test_crf201	active	15	8/5-8				
202	test_crf202	active	16					
203	test_crf203	active	17					
204	test_crf204	active	18					
205	test_crf205	active	19					
210	VLAN0210	active	98					
500	VLAN0500	active	20	3/1-5				
1002	fddi-default	active	4					
1003	trcrf-default	active	7	8/9-16				
1004	fddinet-default	active	5					

ptera-sup (enable) **show vlan**

1005	trbrf-default	
------	---------------	--

active 6 6

1003

VLAN	Туре	SAID	MTU	Parent	RingNo	BrdgNo	Stp	BrdgMode	Trans1	Trans2				
1	enet	100001	 1500	-	-	-	_	-	0	0				
100	trbrf	100100	4472	-	-	0xf	ibm	-	0	0				
101	trcrf	100101	4472	100	0x64	-	-	srb	0	0				
102	trcrf	100102	4472	100	0x65	-	-	srb	0	0				
103	trcrf	100103	4472	100	0x66	-	-	srb	0	0				
104	trcrf	100104	4472	100	0x3e8	-	-	srb	0	0				
105	trcrf	100105	4472	100	0x7d0	-	-	srb	0	0				
200	trbrf	100200	4472	-	-	0xf	ibm	-	0	0				
201	trcrf	100201	4472	200	0жс9	-	-	srb	0	0 !	A11	ring	numbers	S
are d	display	yed in hexad	decimal	. 202	trcrf :	L00202	44	172 200	0хса	-	-	srb	, (0
0														
203	trcrf	100203	4472	200	0xcb	-	-	srb	0	0				
204	trcrf	100204	4472	200	0x3e8	-	-	srb	0	0				
205	trcrf	100205	4472	200	0x7d0	-	-	srb	0	0				
210	enet	100210	1500	-	-	-	-	-	0	0				
500	enet	100500	1500	-	-	-	-	-	0	0				
1002	fddi	101002	1500	-	-	-	-	-	0	0				
1003	trcrf	101003	4472	1005	0xccc	-	-	srb	0	0				
1004	fdnet	101004	1500	-	-	0x0	ieee	-	0	0				
1005	trbrf	101005	4472	-	-	0xf	ibm	-	0	0				
VLAN	DynCre	eated												
1	statio													

100 static 101 static 102 static 103 static 104 static 105 static 200 static 201 static 202 static 203 static 204 static 205 static 210 static 500 static 1002 static 1003 static 1004 static 1005 static

VLAN	AREHop	s STEHops	Backup	CRF	1q	VLAN
101	7	7	off			
102	7	7	off			
103	7	7	off			
104	7	7	off			
105	7	7	off			
201	7	7	off			
202	7	7	off			
203	7	7	off			
204	7	7	off			
205	7	7	off			
1003	7	7	off			
ptera	a-sup (enable)				

show spantree *TrBRF vlan_number* - Affiche des informations importantes, telles que les ports connectés et transférés, et affiche le mode Spanning Tree exécuté au niveau TrBRF.

ptera-sup (enable) show spantree 100 VLAN 100 Spanning tree enabled Spanning tree typeibmDesignated Root00-1 00-10-1f-29-f9-63 Designated Root Designated Root Priority 32768 Designated Root Cost 0 Designated Root Port 1/0 Root Max Age 10 sec Hello Time 2 sec Forward Delay 4 sec Bridge ID MAC ADDR00-10-1f-29-f9-63Bridge ID Priority32768 Bridge Max Age 10 sec Hello Time 2 sec Forward Delay 4 sec Vlan Port-State Cost Priority Portfast Channel_id Port,Vlan _____ ____ 100forwarding54 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled100inactive624 disabled 5/1 0 101 102 103 104 105 * = portstate set by user configuration.

Remarque : Dans cette sortie, le port 5/1 est répertorié sous TrBRF VLAN 100. En effet, vous avez un RSM dans le logement 5 et une liaison ISL est utilisée pour étendre automatiquement le pont du commutateur au RSM. Pour plus d'informations sur l'ISL Token Ring, référez-vous à <u>Trunking TR-ISL entre les commutateurs et routeurs Cisco Catalyst 5000 et 3900</u>.

show spantree *TrCRF vlan_number* - Affiche des informations importantes, telles que les ports connectés et transférés, et affiche le mode Spanning Tree exécuté au niveau TrCRF.

ptera-sup (enable) show spantree 101 VLAN 101 Spanning tree enabled Spanning tree typeieeeDesignated Root00-10 00-10-1f-29-f9-64 Designated Root Priority 32768 Designated Root Cost 0 Designated Root Port 1/0 Root Max Age 10 sec Hello Time 2 sec Forward Delay 4 sec Bridge ID Priority 32769 Bridge Mar Bridge Max Age 10 sec Hello Time 2 sec Forward Delay 4 sec Vlan Port-State Cost Priority Portfast Channel_id Port _____ ____ 101 forwarding* 5 32 disabled 0 5/1 101 not-connected 250 32 disabled 0 8/1 101not-connected25032disabled0101not-connected25032disabled0101not-connected25032disabled0 8/2 8/3 8/4 * = portstate set by user configuration or set by vlan 100 spanning tree. ptera-sup (enable)

show port : vérifie l'existence de la liaison ISL.

Port	Name		Status	Vlan	Level	Duplex	Speed	Туре	
 5/1			connected	trunk	normal	 half	 400	Route	Switch
Port	Trap	IfIndex							
5/1	disabled	 81							
Last-1	Cime-Cleare	d							
Sat Juptera	ın 29 2002, -sup (enabl	03:15:59 e)	9						

show trunk : affiche les ports qui transfèrent et ceux qui sont inactifs, et affiche le mode Spanning Tree au niveau TrBRF.

ptera-sup (enable) **show trunk**

Port	Mode	Encapsulation	Status	Native vlan
5/1	on	isl	trunking	1
7/1-2	on	lane	trunking	1
Port	Vlans allowe	d on trunk		
5/1	1-1005			
7/1-2	1-1005			
Port	Vlans allowe	d and active in	management do	omain
5/1				
7/1-2	1003			
Port	Vlans in spa	nning tree forw	arding state a	and not pruned
5/1	100-105,200-	205		
7/1-2	1003			
ptera-sup	(enable)			

show interface : affiche les configurations VLAN sur le RSM de la même manière que les interfaces physiques sur un routeur.

```
ptera-rsm# show interface
```

Vlan100 is up, line protocol is up Hardware is Cat5k Virtual Token Ring, address is 0009.fa18.3800 (bia0009.fa18.3800) Internet address is 1.1.1.1/24 MTU 4464 bytes, BW 16000 Kbit, DLY 630 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation SNAP, loopback not set ARP type: SNAP, ARP Timeout 04:00:00 Ring speed: 16 Mbps Duplex: half Mode: Classic token ring station Source bridging enabled, srn 0 bn 15 trn 1000 (ring group) spanning explorer enabled Group Address: 0x0000000, Functional Address: 0x08000100 Ethernet Transit OUI: 0x000000 Last input 00:00:01, output 00:00:55, output hang never Last clearing of "show interface" counters never

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue :0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 390 packets input, 21840 bytes, 0 no buffer Received 0 broadcasts, 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 25 packets output, 6159 bytes, 0 underruns 0 output errors, 1 interface resets 0 output buffer failures, 0 output buffers swapped out 3 transitions Vlan200 is up, line protocol is up Hardware is Cat5k Virtual Token Ring, address is 0009.fa18.3800 (bia0009.fa18.3800) Internet address is 1.1.2.1/24 MTU 4464 bytes, BW 16000 Kbit, DLY 630 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation SNAP, loopback not set ARP type: SNAP, ARP Timeout 04:00:00 Ring speed: 16 Mbps Duplex: half Mode: Classic token ring station Source bridging enabled, srn 0 bn 15 trn 1000 (ring group) spanning explorer enabled Group Address: 0x0000000, Functional Address: 0x08000100 Ethernet Transit OUI: 0x000000 Last input 00:00:00, output 00:08:43, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue :0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 381 packets input, 21336 bytes, 0 no buffer Received 0 broadcasts, 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 9 packets output, 783 bytes, 0 underruns 0 output errors, 1 interface resets 0 output buffer failures, 0 output buffers swapped out 3 transitions

ptera-rsm#

show spanning-tree : affiche des informations sur le protocole Spanning Tree exécuté sur le RSM.

ptera-rsm# show spanning-tree

Port 12 (Vlan500) of Bridge group 1 is down

Port path cost 19, Port priority 128 Designated root has priority 32768, address 0090.5f18.1c00 Designated bridge has priority 32768, address 0090.5f18.1c00 Designated port is 12, path cost 0 Timers: message age 0, forward delay 0, hold 0

```
BPDU: sent 0, received 0
```

```
Port 13 (RingGroup1000) of Bridge group 1 is forwarding
   Port path cost 10, Port priority 128
   Designated root has priority 32768, address 0090.5f18.1c00
   Designated bridge has priority 32768, address 0090.5f18.1c00
   Designated port is 13, path cost 0
   Timers: message age 0, forward delay 0, hold 0
   BPDU: sent 0, received 0
```

ptera-rsm#

Dépannage

Il n'existe actuellement aucune information de dépannage spécifique pour cette configuration.

Informations connexes

- Module de commutation de route Token Ring
- Agrégation TR-ISL entre commutateurs Cisco Catalyst 5000 et 3900 et des routeurs
- Page de support Token Ring
- <u>Assistance technologique IBM</u>
- Assistance sur les produits
- Support et documentation techniques Cisco Systems