Ejemplo de Configuración de IPSec/GRE con NAT en el Router IOS

Contenido

Introducción Antes de comenzar Convenciones Prerequisites Componentes Utilizados Configurar Diagrama de la red Configuraciones Verificación Troubleshoot Comandos para resolución de problemas Verificación de Asociaciones de seguridad (SA) Información Relacionada

Introducción

La configuración de ejemplo muestra cómo configurar la encapsulación de ruteo genérica (GRE) sobre Seguridad IP (IPSec) donde GRE/IPSec atraviesa un firewall y realiza la Traducción de dirección de red (NAT).

Antes de comenzar

Convenciones

Para obtener más información sobre las convenciones del documento, consulte <u>Convenciones de</u> <u>Consejos Técnicos de Cisco</u>.

Prerequisites

Este tipo de configuración podría utilizarse para tunelizar y cifrar el tráfico que normalmente no atravesaría un firewall, como IPX (como en nuestro ejemplo aquí) o actualizaciones de ruteo. En este ejemplo, el túnel entre el 2621 y el 3660 sólo funciona cuando se genera tráfico de dispositivos en los segmentos LAN (no un ping IP/IPX extendido de los routers IPSec). La conectividad IP/IPX fue probada con el ping IP/IPX entre los dispositivos 2513A y 2513B.

Nota: Esto no funciona con la traducción de direcciones de puerto (PAT).

Componentes Utilizados

La información que contiene este documento se basa en las versiones de software y hardware indicadas a continuación.

- Cisco IOS® 12.4
- Firewall Cisco PIX 535
- Cisco PIX Firewall Software Release 7.x y posteriores

La información que se presenta en este documento se originó a partir de dispositivos dentro de un ambiente de laboratorio específico. All of the devices used in this document started with a cleared (default) configuration. Si la red está funcionando, asegúrese de haber comprendido el impacto que puede tener un comando antes de ejecutarlo.

Configurar

En esta sección encontrará la información para configurar las funciones descritas en este documento.

Nota: Para encontrar información adicional sobre los comandos usados en este documento, utilice la <u>Command Lookup Tool</u> (<u>sólo</u> clientes registrados).

Nota sobre la configuración IOS: Con el IOS 12.2(13)T de Cisco y códigos posteriores (códigos de secuencia T con mayor numeración 12.3 y códigos posteriores), el "mapa criptográfico" IPSEC configurado sólo debe aplicarse a la interfaz física y ya no debe ser aplicado en la interfaz de túnel GRE. Todavía funciona tener el "mapa criptográfico" en la interfaz física y de túnel cuando se utilizan los códigos 12.2.13(T) y posteriores. Sin embargo, se recomienda utilizarlo sólo en la interfaz física.

Diagrama de la red

Este documento utiliza la instalación de red que se muestra en el siguiente diagrama.

Nota: Las direcciones IP utilizadas en esta configuración no son legalmente enrutables en Internet. Son <u>direcciones RFC 1918</u> que se han utilizado en un entorno de laboratorio.

Notas del diagrama de la red

- Túnel GRE de 10.2.2.1 a 10.3.3.1 (IPX network BB)
- túnel IPSec de 10.1.1.2 (10.99.99.12) a 10.99.99.2

Configuraciones

Dispositivo 2513A
ipx routing 00e0.b064.20c1
!
interface Ethernet0
ip address 10.2.2.2 255.255.255.0
no ip directed-broadcast
ipx network AA
!
ip route 0.0.0.0 0.0.0.0 10.2.2.1
! Output Suppressed
2621
version 12.4

```
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
1
hostname 2621
!
ip subnet-zero
!
ip audit notify log
ip audit po max-events 100
ipx routing 0030.1977.8f80
isdn voice-call-failure 0
cns event-service server
1
crypto isakmp policy 10
hash md5
authentication pre-share
crypto isakmp key cisco123 address 10.99.99.2
!
crypto ipsec transform-set myset esp-des esp-md5-hmac
!
crypto map mymap local-address FastEthernet0/1
crypto map mymap 10 ipsec-isakmp
set peer 10.99.99.2
 set transform-set myset
match address 101
controller T1 1/0
!
interface Tunnel0
ip address 192.168.100.1 255.255.255.0
 no ip directed-broadcast
 ipx network BB
 tunnel source FastEthernet0/0
 tunnel destination 10.3.3.1
 crypto map mymap
!
interface FastEthernet0/0
 ip address 10.2.2.1 255.255.255.0
no ip directed-broadcast
duplex auto
 speed auto
 ipx network AA
1
interface FastEthernet0/1
 ip address 10.1.1.2 255.255.255.0
 no ip directed-broadcast
 duplex auto
speed auto
crypto map mymap
Ţ
ip classless
ip route 10.3.3.0 255.255.255.0 Tunnel0
ip route 10.3.3.1 255.255.255.255 10.1.1.1
ip route 10.99.99.0 255.255.255.0 10.1.1.1
no ip http server
1
access-list 101 permit gre host 10.2.2.1 host 10.3.3.1
1
line con 0
transport input none
line aux 0
line vty 0 4
```

no scheduler allocate end

!--- Output Suppressed

PIX

```
pixfirewall# sh run
: Saved
PIX Version 7.0
1
hostname pixfirewall
enable password 2KFQnbNIdI.2KYOU encrypted
names
1
interface Ethernet0
nameif outside
security-level 0
ip address 10.99.99.1 255.255.255.0
1
interface Ethernet1
nameif inside
security-level 100
ip address 10.1.1.1 255.255.255.0
1
global (outside) 1 10.99.99.50-10.99.99.60
nat (inside) 1 0.0.0.0 0.0.0.0 0 0
static (inside,outside) 10.99.99.12 10.1.1.2 netmask
255.255.255.255 0 0
access-list 102 permit esp host 10.99.99.12 host
10.99.99.2
access-list 102 permit udp host 10.99.99.12 host
10.99.99.2 eq isakmp
route outside 0.0.0.0 0.0.0.0 10.99.99.2 1
route inside 10.2.2.0 255.255.255.0 10.1.1.2 1
!--- Output Suppressed
3660
version 12.4
service timestamps debug datetime
service timestamps log uptime
no service password-encryption
1
hostname 3660
1
memory-size iomem 30
ip subnet-zero
no ip domain-lookup
1
ipx routing 0030.80f2.2950
cns event-service server
1
crypto isakmp policy 10
hash md5
authentication pre-share
crypto isakmp key cisco123 address 10.99.99.12
!
```

```
crypto ipsec transform-set myset esp-des esp-md5-hmac
I
crypto map mymap local-address FastEthernet0/0
crypto map mymap 10 ipsec-isakmp
set peer 10.99.99.12
set transform-set myset
match address 101
interface Tunnel0
ip address 192.168.100.2 255.255.255.0
no ip directed-broadcast
ipx network BB
tunnel source FastEthernet0/1
tunnel destination 10.2.2.1
crypto map mymap
interface FastEthernet0/0
ip address 10.99.99.2 255.255.255.0
no ip directed-broadcast
ip nat outside
duplex auto
speed auto
crypto map mymap
interface FastEthernet0/1
ip address 10.3.3.1 255.255.255.0
no ip directed-broadcast
ip nat inside
duplex auto
speed auto
ipx network CC
ip nat pool 3660-nat 10.99.99.70 10.99.99.80 netmask
255.255.255.0
ip nat inside source list 1 pool 3660-nat
ip classless
ip route 0.0.0.0 0.0.0.0 Tunnel0
ip route 10.2.2.1 255.255.255.255 10.99.99.1
ip route 10.99.99.12 255.255.255.255 10.99.99.1
no ip http server
1
access-list 1 permit 10.3.3.0 0.0.0.255
access-list 101 permit gre host 10.3.3.1 host 10.2.2.1
1
line con 0
transport input none
line aux 0
line vty 0 4
login
!
end
!--- Output Suppressed
Dispositivo 2513B
ipx routing 00e0.b063.e811
interface Ethernet0
ip address 10.3.3.2 255.255.255.0
no ip directed-broadcast
ipx network CC
ip route 0.0.0.0 0.0.0.0 10.3.3.1
```

Verificación

En esta sección encontrará información que puede utilizar para confirmar que su configuración esté funcionando correctamente.

La herramienta <u>Output Interpreter</u> (sólo para clientes registrados) permite utilizar algunos comandos "show" y ver un análisis del resultado de estos comandos.

- show crypto ipsec sa Muestra las asociaciones de seguridad de la fase 2.
- show crypto isakmp sa Muestra las conexiones de sesión cifradas activas actuales para todos los motores criptográficos.
- Opcionalmente: show interfaces tunnel number: muestra información de interfaz del túnel.
- <u>show ip route</u> Muestra todas las rutas IP estáticas, o aquellas instaladas usando la función de descarga de ruta AAA (autenticación, autorización y contabilidad).
- <u>show ipx route</u> Muestra el contenido de la tabla de ruteo IPX.

Troubleshoot

En esta sección encontrará información que puede utilizar para solucionar problemas de configuración.

Comandos para resolución de problemas

La herramienta <u>Output Interpreter</u> (sólo para clientes registrados) permite utilizar algunos comandos "show" y ver un análisis del resultado de estos comandos.

Nota: Antes de ejecutar comandos debug, consulte <u>Información Importante sobre Comandos</u> <u>Debug</u>.

- debug crypto engine Muestra el tráfico que está cifrado.
- debug crypto ipsec Muestra los IPSec Negotiations de la fase 2.
- debug crypto isakmp: muestra las negociaciones de fase 1 del protocolo Asociación de seguridad en Internet y administración de claves (ISAKMP).
- Opcionalmente: debug ip routing: muestra información sobre las actualizaciones de la tabla de ruteo del Protocolo de Información de Ruteo (RIP) y las actualizaciones de caché de rutas.
- debug ipx routing {activity | events} debug ipx routing {activity | events} Muestra información sobre los paquetes de ruteo IPX que el router envía y recibe.

Verificación de Asociaciones de seguridad (SA)

- <u>clear crytpo ipsec sa</u> Borra todas las asociaciones de seguridad IPSec.
- <u>clear crypto isakmp Limpia las asociaciones de seguridad IKE.</u>
- Opcionalmente: clear ipx route * Elimina todas las rutas de la tabla de ruteo IPX.

Información Relacionada

- Páginas de soporte de productos de seguridad IP (IPSec)
- Páginas de soporte de GRE
- <u>Soporte Técnico Cisco Systems</u>