Configuración del cifrado ASR1000 sobre OTV Unicast

Contenido

Introducción Prerequisites Requirements Componentes Utilizados Antecedentes Configurar Diagrama de la red Configuraciones Verificación Troubleshoot

Introducción

Este documento describe el conjunto básico de configuraciones que se utilizan para activar Overlay Transport Virtualization (OTV) con cifrado IPSec. El cifrado sobre OTV no requiere ninguna configuración adicional del extremo OTV. Solo tiene que entender cómo coexisten OTV e IPSEC.

Para agregar cifrado a través de OTV, debe agregar un encabezado de carga útil de seguridad de encapsulación (ESP) a la parte superior de la PDU de OTV. Puede lograr el cifrado en los dispositivos periféricos ASR1000 (ED) de dos maneras: i) IPSec ii) GETVPN.

Prerequisites

Requirements

No hay requisitos específicos para este documento.

Componentes Utilizados

La información que contiene este documento se basa en las siguientes versiones de software y hardware.

- Routers ASR 1000 para dispositivos periféricos (ED)
- Núcleo (nube ISP)
- Switches Catalyst 2960 como switch de acceso en cualquier sitio

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. Si tiene una red en vivo, asegúrese de entender el posible impacto de cualquier comando.

Antecedentes

Se supone que los usuarios de este documento conocen la funcionalidad básica y las configuraciones de OTV.

También puede seguir estos documentos para lo mismo:

- Configuración de unidifusión OTV
- Configuración de multidifusión de OTV

Configurar

Diagrama de la red

Configuraciones

Sitio A: Configuraciones ED:

Site_A_1#show run	Site_A_2#show run
Building configuration	Building configuration
otv site bridge-domain 99	otv site bridge-domain 99
I	!
otv site-identifier 0000.0000.0001	otv site-identifier 0000.0000.0001
crypto isakmp policy 10	crypto isakmp policy 10
hash md5	hash md5
authentication pre-share	authentication pre-share

```
crypto isakmp key cisco address 30.0.0.1
                                            crypto isakmp key cisco address 30.0.0.1
crypto isakmp key cisco address 40.0.0.1
                                            crypto isakmp key cisco address 40.0.0.1
!
                                             !
crypto ipsec transform-set tset esp-aes
                                            crypto ipsec transform-set tset esp-aes
esp-md5-hmac
                                            esp-md5-hmac
mode tunnel
                                             mode tunnel
                                             1
!
crypto map cmap 1 ipsec-isakmp
                                            crypto map cmap 2 ipsec-isakmp
set peer 30.0.0.1
                                             set peer 30.0.0.1
set transform-set tset
                                             set transform-set tset
match address cryptoacl
                                             match address cryptoacl2
crypto map cmap 3 ipsec-isakmp
                                            crypto map cmap 3 ipsec-isakmp
set peer 40.0.0.1
                                             set peer 40.0.0.1
set transform-set tset
                                             set transform-set tset
match address cryptoacl3
                                             match address cryptoacl3
!
                                             !
interface Overlay99
                                            interface Overlay99
no ip address
                                             no ip address
otv join-interface GigabitEthernet0/0/1
                                             otv join-interface GigabitEthernet0/0/1
otv adjacency-server unicast-only
                                             otv use-adjacency-server 10.0.0.1 30.0.0.1
                                            unicast-only
service instance 100 ethernet
                                             service instance 100 ethernet
encapsulation dot1q 100
                                             encapsulation dotlg 100
bridge-domain 100
                                             bridge-domain 100
 1
                                             1
 service instance 101 ethernet
                                             service instance 101 ethernet
encapsulation dotlq 101
                                             encapsulation dotlg 101
bridge-domain 101
                                             bridge-domain 101
1
                                             1
!
                                             Ţ
interface GigabitEthernet0/0/0
                                            interface GigabitEthernet0/0/0
no ip address
                                             no ip address
service instance 99 ethernet
                                            service instance 99 ethernet
encapsulation dot1g 99
```

```
bridge-domain 99
 Т
service instance 100 ethernet
encapsulation dotlq 100
bridge-domain 100
 !
service instance 101 ethernet
encapsulation dot1q 101
bridge-domain 101
 !
!
interface GigabitEthernet0/0/1
ip address 10.0.0.1 255.255.255.0
crypto map cmap
!
ip access-list extended cryptoacl
permit gre host 10.0.0.1 host 30.0.0.1
ip access-list extended cryptoacl3
permit gre host 10.0.0.1 host 40.0.0.1
```

```
encapsulation dot1q 99
bridge-domain 99
 !
service instance 100 ethernet
encapsulation dotlq 100
bridge-domain 100
 !
service instance 101 ethernet
encapsulation dotlq 101
bridge-domain 101
!
Т
interface GigabitEthernet0/0/1
ip address 20.0.0.1 255.255.255.0
crypto map cmap
!
ip access-list extended cryptoacl2
permit gre host 20.0.0.1 host 30.0.0.1
ip access-list extended cryptoacl3
permit gre host 20.0.0.1 host 40.0.0.1
```

Sitio B: Configuraciones ED:

```
Site_B_1#sh run
                                           Site_B_2#sh run
Building configuration...
                                           Building configuration...
otv site bridge-domain 99
                                           otv site bridge-domain 99
1
                                            !
otv site-identifier 0000.0000.0002
                                           otv site-identifier 0000.0000.0002
crypto isakmp policy 10
                                           crypto isakmp policy 10
hash md5
                                            hash md5
authentication pre-share
                                            authentication pre-share
crypto isakmp key cisco address 10.0.0.1
                                           crypto isakmp key cisco address 10.0.0.1
crypto isakmp key cisco address 20.0.0.1
                                           crypto isakmp key cisco address 20.0.0.1
```

!

!

crypto ipsec transform-set tset esp-aes crypto ipsec transform-set tset esp-aes esp-md5-hmac esp-md5-hmac mode tunnel mode tunnel ! ! crypto map cmap 1 ipsec-isakmp crypto map cmap 1 ipsec-isakmp set peer 10.0.0.1 set peer 10.0.0.1 set transform-set tset set transform-set tset match address cryptoacl match address cryptoacl crypto map cmap 2 ipsec-isakmp crypto map cmap 2 ipsec-isakmp set peer 20.0.0.1 set peer 20.0.0.1 set transform-set tset set transform-set tset match address cryptoacl2 match address cryptoacl2 ! 1 interface Overlay99 interface Overlay99 no ip address no ip address otv join-interface GigabitEthernet1/0/2 otv join-interface GigabitEthernet2/2/0 otv use-adjacency-server 10.0.0.1 unicast- otv use-adjacency-server 10.0.0.1 30.0.0.1 only unicast-only service instance 100 ethernet otv adjacency-server unicast-only service instance 100 ethernet encapsulation dotlq 100 encapsulation dotlq 100 bridge-domain 100 bridge-domain 100 1 1 service instance 101 ethernet service instance 101 ethernet encapsulation dotlg 101 encapsulation dotlq 101 bridge-domain 101 bridge-domain 101 1 1 Ţ interface GigabitEthernet2/2/1 1 interface GigabitEthernet1/0/3 no ip address no ip address service instance 99 ethernet service instance 99 ethernet encapsulation dotlg 99 encapsulation dot1q 99 bridge-domain 99

```
bridge-domain 99
```

```
Т
                                              service instance 100 ethernet
 service instance 100 ethernet
                                              encapsulation dotlg 100
encapsulation dot1q 100
                                             bridge-domain 100
bridge-domain 100
                                              !
 !
                                              service instance 101 ethernet
service instance 101 ethernet
                                              encapsulation dot1q 101
encapsulation dotlq 101
                                             bridge-domain 101
bridge-domain 101
                                              !
 !
                                             !
!
                                             interface GigabitEthernet2/2/0
interface GigabitEthernet1/0/2
                                              ip address 40.0.0.1 255.255.255.0
ip address 30.0.0.1 255.255.255.0
                                             crypto map cmap
crypto map cmap
                                             !
!
                                             ip access-list extended cryptoacl
ip access-list extended cryptoacl
                                             permit gre host 40.0.0.1 host 10.0.0.1
permit gre host 30.0.0.1 host 10.0.0.1
                                             ip access-list extended cryptoacl2
ip access-list extended cryptoacl2
                                             permit gre host 40.0.0.1 host 20.0.0.1
permit gre host 30.0.0.1 host 20.0.0.1
```

!

Verificación

Utilize esta sección para confirmar que su configuración funcione correctamente.

- 1. Verifique si la dirección MAC del host VLAN interno (en este caso, la SVI en los switches Catalyst 2960) se ha aprendido en las tablas de ruta OTV.
- Compruebe si se realizan los encapsulados y los decap criptográficos para el tráfico Overlay (OTV traffic).

Una vez que el OTV aparece después de configurar el mapa crypto en la interfaz de unión, verifique el reenviador activo para las VLAN locales (en este caso VLAN 100 y 101). Esto muestra que Site_A_1 y Site_B_2 son los reenviadores activos para las VLAN pares ya que probará el cifrado del tráfico para los pings iniciados desde VLAN 100 en el Sitio A a VLAN 100 en el Sitio B:

Site_A_1#show otv vlan Key: SI - Service Instance, NA - Non AED, NFC - Not Forward Capable.

Ins	t VLAN	BD	Auth ED	State	Site If(s)		
0	100	100	*Site_A_1	active	Gi0/0/0:SI100		
0	101	101	Site_A_2	inactive(NA)	Gi0/0/0:SI101		
0	200	200	*Site_A_1	active	Gi0/0/0:SI200		
0	201	201	Site_A_2	inactive(NA)	Gi0/0/0:SI201		
Total VLAN(s): 4							
Site_B_2#show otv vlan							
Key: SI - Service Instance, NA - Non AED, NFC - Not Forward Capable.							
Overlay 99 VLAN Configuration Information							
Ins	t VLAN	BD	Auth ED	State	Site If(s)		
0	100	100	*Site_B_2	active	Gi2/2/1:SI100		
0	101	101	Site_B_1	inactive(NA)	Gi2/2/1:SI101		
0	200	200	*Site_B_2	active	Gi2/2/1:SI200		
0	201	201	Site_B_1	inactive(NA)	Gi2/2/1:SI201		

Total VLAN(s): 4

Para verificar si los paquetes realmente se encapsulan y se desencapsulan en cualquiera de los ED, debe verificar si la sesión IPSec está activa y los valores de contador en las sesiones crypto para confirmar que los paquetes están efectivamente cifrados y descifrados. Para verificar si la sesión IPSec está activa, ya que se activa solamente si fluye tráfico, verifique el resultado de **show crypto isakmp sa**. Aquí, sólo se comprueban los resultados de los reenviadores activos, pero esto debería mostrar el estado activo en todos los ED para que OTV sobre cifrado funcione.

Site_A_1#show crypto isakmp sa

IPv4 Crypto ISA	KMP SA						
dst	src	state	conn-id status				
10.0.0.1	30.0.0.1	QM_IDLE	1008 ACTIVE				
10.0.0.1	40.0.0.1	QM_IDLE	1007 ACTIVE				
Site_B_2#sh crypto isakmp sa							
IPv4 Crypto ISAKMP SA							
dst	src	state	conn-id status				
20.0.0.1	40.0.0.1	QM_IDLE	1007 ACTIVE				
10.0.0.1	40.0.0.1	QM_IDLE	1006 ACTIVE				

Ahora, para confirmar si los paquetes se cifran y descifran, primero debe saber qué esperar en los resultados de **show crypto session detail**. Por lo tanto, cuando se inicia el paquete de eco ICMP

del switch Sw_A hacia el Sw_B, se espera esto:

- Mientras el eco ICMP sale del ED Site_A_1 que es el reenviador activo para la VLAN 100, tendrá que encapsular la carga útil OTV (eco ICMP + MPLS + GRE)
- Luego, una vez que el eco ICMP llega al ED Site_B_2, que es el reenviador activo para VLAN 100, tendría que desencapsular la carga útil OTV (eco ICMP + MPLS + GRE)
- Ahora, una vez que el ED Site_B_2 recibe la respuesta de eco ICMP de Sw_B, tendría que encapsular de nuevo la carga útil de OTV (eco ICMP + MPLS + GRE)
- Y una vez que la Respuesta de eco ICMP llega al ED Site_A_1, tendría que **volver** a **desencapsular** la carga útil de OTV (ICMP Echo + MPLS + GRE)

Después de los pings exitosos de Sw_A a Sw_B, espere ver un incremento de 5 contadores en la sección "enc" y "dec" de la salida **show crypto session detail** en ambos ED del reenviador activo.

Ahora, verifique lo mismo de los ED:

Site_A_1(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 0 drop 0 life (KB/Sec) 4608000/3345

Outbound: #pkts enc'ed 10 drop 0 life (KB/Sec) 4607998/3291 <<<< 10 counter before ping

Site_A_1(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 0 drop 0 life (KB/Sec) 4608000/3343

Inbound: #pkts dec'ed 18 drop 0 life (KB/Sec) 4607997/3289 <<<< 18 counter before ping

Site_B_2(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 18 drop 0 life (KB/Sec) 4607997/3295 <<<< 18 counter before ping

Outbound: #pkts enc'ed 9 drop 0 life (KB/Sec) 4607999/3295

Site_B_2(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 10 drop 0 life (KB/Sec) 4607998/3293 <<<< 10 counter before ping

Inbound: #pkts dec'ed 1 drop 0 life (KB/Sec) 4607999/3293

Sw_A(config)#do ping 192.168.10.1 source vlan 100

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.10.1, timeout is 2 seconds:

Packet sent with a source address of 192.168.10.2

11111

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/10 ms

```
Sw_A(config)#
```

Site_A_1(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 0 drop 0 life (KB/Sec) 4608000/3339

Outbound: #pkts enc'ed 15 drop 0 life (KB/Sec) 4607997/3284 <<<< 15 counter after ping (After ICMP Echo)

Site_A_1(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 0 drop 0 life (KB/Sec) 4608000/3338

Inbound: #pkts dec'ed 23 drop 0 life (KB/Sec) 4607997/3283 <<<< 23 counter after ping
(After ICMP Echo Reply)</pre>

Site_B_2(config-if)#do show crypto session detail | section enc

K - Keepalives, N - NAT-traversal, T - cTCP encapsulation

Outbound: #pkts enc'ed 23 drop 0 life (KB/Sec) 4607997/3282 <<<< 23 counter after ping (After ICMP Echo Reply)

Outbound: #pkts enc'ed 9 drop 0 life (KB/Sec) 4607999/3282

Site_B_2(config-if)#do show crypto session detail | section dec

Inbound: #pkts dec'ed 15 drop 0 life (KB/Sec) 4607997/3281 <<<< 15 counter after ping
(After ICMP Echo)</pre>

Inbound: #pkts dec'ed 1 drop 0 life (KB/Sec) 4607999/3281 Esta guía de configuración puede transmitir los detalles de configuración requeridos con el uso de IPSec para la configuración de doble reposición de núcleo unidifusión.

Troubleshoot

Actualmente, no hay información específica de troubleshooting disponible para esta configuración.