Configuración de IS-IS para IP en los routers de Cisco

Contenido

Introducción Prerequisites Requirements Componentes Utilizados Convenciones Configuración de IS-IS de muestra Diagrama de la red Configuraciones Supervisión IS-IS Supervisión de las adyacencias IS-IS Supervisión de la base de datos IS-IS Verificación Troubleshoot Información Relacionada

Introducción

El objetivo de este documento es mostrar una configuración básica de Sistema intermedio a Sistema intermedio (IS-IS) para IP en los routers Cisco. Además de la configuración, se demuestra cómo monitorear la información de IS-IS, como la información de elección del Sistema Intermedio Designado (DIS) y la información de la base de datos IS-IS.

Prerequisites

Requirements

No hay requisitos específicos para este documento.

Componentes Utilizados

La información de este documento se basa en la versión 12.1(5)T9 del software Cisco IOS ®.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Convenciones

Consulte <u>Convenciones de Consejos TécnicosCisco para obtener más información sobre las</u> <u>convenciones del documento.</u>

Configuración de IS-IS de muestra

En esta sección encontrará la información para configurar las funciones descritas en este documento.

Nota: Use la <u>Command Lookup Tool</u> (sólo <u>clientes registrados</u>) para obtener más información sobre los comandos utilizados en este documento.

Para habilitar IS-IS para IP en un router Cisco y hacer que éste intercambie información de ruteo con otros routers habilitados para IS-IS, debe realizar estas dos tareas:

- Habilite el proceso IS-IS y asigne un área
- Habilite IS-IS para el IP Routing en una interfaz

Otras tareas de configuración son optativas, no obstante, las dos tareas anteriores son obligatorias. Para obtener más información sobre las tareas de configuración opcionales, consulte <u>Configuración de IS-IS Integrado</u>.

Diagrama de la red

En este documento, se utiliza esta configuración de red:

Configuraciones

En este documento, se utilizan estas configuraciones:

- Router 1
- Router 2
- Router 3

Las siguientes configuraciones de ejemplo configuran todos los routers en la topología anterior con estos parámetros:

- Área 49.0001
- Routers de nivel 1 (L1) y nivel 2 (L2) (este es el valor predeterminado a menos que se especifique lo contrario)
- Ningún parámetro optativo
- Ejecución de IS-IS sólo para IP
- Interfaces de loopback (los loopbacks son anunciados por IS-IS, no está habilitado para IS-IS)

```
Router 1
1
interface Loopback0
ip address 172.16.1.1 255.255.255.255
!--- Creates loopback interface and assigns !--- IP
address to interface Loopback0. ! interface Ethernet0 ip
address 172.16.12.1 255.255.255.0 ip router isis !---
Assigns IP address to interface Ethernet0 !--- and
enables IS-IS for IP on the interface. ! router isis
passive-interface Loopback0 net
49.0001.1720.1600.1001.00 ! !--- Enables the IS-IS
process on the router, !--- makes loopback interface
passive !--- (does not send IS-IS packets on interface),
!--- and assigns area and system ID to router.
Router 2
1
interface Loopback0
ip address 172.16.2.2 255.255.255.255
!--- Creates loopback interface and assigns !--- IP
address to interface Loopback0. ! Interface Ethernet0 ip
address 172.16.12.2 255.255.255.0 ip router isis !---
Assigns IP address to interface Ethernet0 !--- and
enables IS-IS for IP on the interface. ! Interface
Serial0 ip address 172.16.23.1 255.255.255.252 ip router
isis !--- Assigns IP address to interface Serial0 !--
and enables IS-IS for IP on the interface. ! router isis
passive-interface Loopback0 net
49.0001.1720.1600.2002.00 ! !--- Enables the IS-IS
process on the router, !--- makes loopback interface
passive !--- (does not send IS-IS packets on interface),
!--- and assigns area and system ID to router.
Router 3
interface Loopback0
ip address 172.16.3.3 255.255.255.255
!--- Creates loopback interface !--- and assigns IP
address to !--- interface Loopback0. ! Interface Serial0
ip address 172.16.23.2 255.255.255.252 ip router Isis !-
-- Assigns IP address to !--- interface Serial0 and
enables !--- IS-IS for IP on the interface. ! router
isis passive-interface Loopback0 net
49.0001.1234.1600.2231.00 ! !--- Enables the IS-IS
process on the router, !--- makes loopback interface
passive !--- (does not send IS-IS packets on interface),
!--- and assigns area and system ID to router.
```

Supervisión IS-IS

Existen varios comandos show disponibles para monitorear el estado de IS-IS en un router Cisco. Este documento muestra algunos de los comandos más básicos, en relación con las configuraciones anteriores del router.

La herramienta Output Interpreter Tool (clientes registrados solamente) (OIT) soporta ciertos comandos show. Utilice la OIT para ver un análisis del resultado del comando show.

Supervisión de las adyacencias IS-IS

Utilice el comando show clns neighbor para mostrar las adyacencias para un router específico. Este es el resultado de este comando desde el Router 1 (R1) y el Router 2 (R2):

R1# show clns neighbor								
System Id	Interface	SNPA	State	Holdtime	Type Protocol			
R2	Et0	0000.0c47.b947	Up	24	L1L2 ISIS			
R2# show clns neighbor								
System Id	Interface	SNPA	State	Holdtime	Type Protocol			
R1	Et0	0000.0c09.9fea	Up	24	L1L2 ISIS			
R3	Se0	*HDLC*	Up	28	L1L2 ISIS			
		-						

En el ejemplo anterior, R1 reconoce a R2 en su interfaz E0 con el tipo de adyacencia L1L2. Debido a que R1 y R2 están establecidos con configuraciones predeterminadas, envían y reciben saludos L1 y L2.

El R2 reconoce al R1 en su interfaz E0 y el Router 3 (R3) en su interfaz S0. La misma explicación de arriba vale para el tipo de adyacencia.

Dado que R1 y R2 están en la misma interfaz Ethernet, hay un DIS para L1 y L2. Puede verificar esto usando el comando **show clns interface <int>** en el Router 1, como se muestra a continuación:

```
Rl# show clns interface ethernet 0
Ethernet0 is up, line protocol is up
Checksums enabled, MTU 1497, Encapsulation SAP
Routing Protocol: ISIS
Circuit Type: level-1-2
Interface number 0x0, local circuit ID 0x1
Level-1 Metric: 10, Priority: 64, Circuit ID: R2.01
Number of active level-1 adjacencies: 1
Level-2 Metric: 10, Priority: 64, Circuit ID: R2.01
Number of active level-2 adjacencies: 1
Next ISIS LAN Level-1 Hello in 5 seconds
Next ISIS LAN Level-2 Hello in 1 seconds
```

En el resultado anterior, R2 es la DIS. El R2 (DIS) es el que genera el seudo nodo LSP (paquete de estado de link) y se denota con un LSP-ID -R2.01 sin cero

Dado que la métrica/prioridad es la misma para ambos routers en L1/L2, el marcador de tiempo para el DIS es la dirección de puntos de conexión de subred (SNPA) más alta del segmento LAN. La dirección de SNPA hace referencia a la dirección de link de datos y en este caso es la dirección de MAC. Otra instancia de direcciones de link de datos sería X.25 Addresses y DLCI Frame Relay.

Tenga en cuenta que DIS se selecciona para ambos niveles y que no existe una copia de respaldo de DIS, al igual que con Abrir primero la ruta más corta (OSPF), que posee un router designado (DS) de respaldo.

Algunos otros puntos de interés de la salida anterior incluyen:

- Tipo de circuito: L1L2
- Las métricas de L1 y L2 y las prioridades están en valores predeterminados: 10 y 64
- Adyacencias L1 y L2: 1 (desde la perspectiva R1 en la interfaz Ethernet es sólo R2)
- Saludos de LAN IS-IS para L1 y L2
- Unidad máxima de transmisión (MTU): 1497. Esto se debe a que el encabezado IS-IS Open Systems Interconnection (OSI) se encapsula dentro de un encabezado 802.2 de 3 bytes.

Supervisión de la base de datos IS-IS

El comando show isis database (detail) muestra el contenido de la base de datos de IS-IS. Este es el resultado de este comando cuando se ejecuta en R2. Dado que IS-IS es un protocolo de estado del link, la base de datos de estados de link debe ser la misma para cualquier router de la misma área.

R2# show isis	database								
ISIS Level-1 Link State Database:									
LSPID	LSP Seq Num	LSP Checksum	LSP Holdtime	ATT/P/OL					
R1.00-00	0x000008B	0x6843	55	0/0/0					
R2.00-00 *	0x0000083	0x276E	77	0/0/0					
R2.01-00 *	0×00000004	0x34E1	57	0/0/0					
R3.00-00	0x0000086	0xF30E	84	0/0/0					
ISIS Level-2 Link State Database:									
LSPID	LSP Seq Num	LSP Checksum	LSP Holdtime	ATT/P/OL					
R1.00-00	0x00000092	0x34B2	41	0/0/0					
R2.00-00 *	A80000008A	0x7A59	115	0/0/0					
R2.01-00 *	0×00000004	0xC3DA	50	0/0/0					
R3.00-00	0x000008F	0x0766	112	0/0/0					

Hay algunas cuestiones para considerar en el resultado de arriba. Primero, sobre el LSP-ID:

EI LSP-ID, R1.00-00, se puede dividir en tres secciones: R1/00/00

- R1 = ID del sistema
- 00 = valor distinto de cero para el seudo nodo. Observe que R2.01-00 es el pseudo nodo LSP.
- 00 = número de fragmento. En este caso, sólo hay números de fragmento de 00, lo que indica que todos los datos encajan en este fragmento LSP, y no hubo necesidad de crear más fragmentos. Si hubiese habido información que no encajaba en el primer LSP, IS-IS habría creado más fragmentos LSP, tales como 01, 02 y así sucesivamente.

El comando * denota los LSPs generados por *este* router, el router en el que se ejecutó el comando **show**. Además, dado que este router es un router L1 y L2, posee una base de datos L1 y L2.

También puede observar un LSP específico y utilizar la palabra clave **detail** para mostrar más información. Aquí se muestra un ejemplo de esto:

R2# show isis database R2.00-00 detail ISIS Level-1 LSP R2.00-00 LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL R2.00-00 * 0x0000093 0x077E 71 0/0/0 Area Address: 49.0001 0xCC NLPTD: Hostname: R2 IP Address: 172.16.2.2 Metric: 10 IP 172.16.12.0 255.255.255.0 IP 172.16.2.2 255.255.255.255 Metric: 0 Metric: 10 IP 172.16.23.0 255.255.255.252 Metric: 10 IS R2.01 Metric: 10 IS R3.00 ISIS Level-2 LSP R2.00-00 LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL R2.00-00 * 0x0000009A 0x5A69 103 0/0/0 Area Address: 49.0001 NLPTD: 0xCC Hostname: R2 IP Address: 172.16.2.2 Metric: 10 IS R2.01 Metric: 10 IS R3.00 Metric: 10 IP 172.16.23.0 255.255.255.252 Metric: 10 IP 172.16.1.1 255.255.255.255 Metric: 10 IP 172.16.3.3 255.255.255.255 Metric: 0 IP 172.16.2.2 255.255.255.255 Metric: 10 IP 172.16.12.0 255.255.255.0

La salida anterior muestra que la dirección de loopback de este router se anuncia con un valor de 0. Esto sucede porque al loopback se lo anuncia con un comando passive-interface en el proceso IS-IS del router y la interfaz del loopback en sí no está habilitado para IS-IS. Todos los otros prefijos IP tienen un valor de 10, que es el costo predeterminado en las interfaces que ejecutan IS-IS.

Verificación

Actualmente, no hay un procedimiento de verificación disponible para esta configuración.

Troubleshoot

Actualmente, no hay información específica de troubleshooting disponible para esta configuración.

Información Relacionada

- Soporte de IS-IS Multiarea
- Página de Soporte de IP Routing
- Soporte Técnico y Documentación Cisco Systems