

 [bookmark: _Hlk37412092]

 [bookmark: _Toc94534585]

 Published: July 2024

 [image: A logo for a companyDescription automatically generated]

 In partnership with:

 [bookmark: _Toc94534586][bookmark: About_CVDs]About the Cisco Validated Design Program

 The Cisco Validated Design (CVD) program consists of systems and solutions designed, tested, and documented to facilitate faster, more reliable, and more predictable customer deployments. For more information, go to: http://www.cisco.com/go/designzone.

 [bookmark: Executive_Summary][bookmark: _Toc94534587]Executive Summary

 Cisco Validated Designs (CVDs) consist of systems and solutions that are designed, tested, and documented to facilitate and improve customer deployments. These designs incorporate a wide range of technologies and products into a portfolio of solutions that have been developed to address the business needs of our customers.

 Generative Artificial Intelligence (Generative AI) stands as a transformative force across every industry, driving innovation in multiple use cases. Despite opportunities, integrating generative AI into enterprise settings poses unique challenges. Leveraging internal data effectively is critical for On-prem AI solutions. Building the right infrastructure with appropriate computational resources is critical. Visibility and monitoring of the entire stack is important from the operations point of view.

 The Cisco Compute Hyperconverged with Nutanix GPT-in-a-Box solution takes the complexity out of adopting generative AI by providing prescriptive steps for deploying the underlying infrastructure for Nutanix GPT-in-a- Box. This solution combines Cisco® servers and SaaS operations with Nutanix software, utilizing the most popular Large Language Models (LLMs) to produce a fully validated AI-ready platform that can simplify and jumpstart your AI initiatives from the data center to the edge.

 This document explains the Cisco Validated Design and Deployment for GPT-in-a-Box on Cisco Compute Hyperconverged with Nutanix to deploy on-premises Generative AI applications. This solution outlines the design that supports the deployment of an innovative, flexible, and secure generative pretrained transformer (GPT) solution for Generative AI to privately run and manage organization’s choice of AI large language models (LLMs) and applications leveraging it.

 The solution explains a spectrum of common use cases for Generative AI on-premises leveraging organization’s internal or proprietary knowledge base with special focus on Retrieval Augmented Generation (RAG).

 [bookmark: _Toc94534588][bookmark: Solution_Overview][bookmark: Solution_Components]Solution Overview

 This chapter contains the following:

 ● Introduction

 ● Purpose of this Document

 ● Audience

 ● Solution Summary

 [bookmark: Introduction]Introduction

 Generative AI is reshaping industries, from dynamic marketing content to interactive virtual assistants and chatbots. However, unlocking its potential within enterprises poses challenges. It is critical to effectively use the internal data of the organization in these applications. A robust infrastructure, observability across the stack, optimized model deployment and serving, high availability, and scaling are few.

 The solution highlights how enterprises can design and deploy Generative Pretrained Transformer (GPT) solution for Generative AI to privately run and manage organization’s choice of AI large language models (LLMs) and applications leveraging it. The solution focusses on Retrieval Augmented Generation as the reference use case.

 The hardware and software components are integrated so that customers can deploy the solution quickly and economically while eliminating many of the risks associated with researching, designing, building, and deploying similar solutions from the ground up.

 [bookmark: PurposeOfThisDocument]Purpose of this Document

 [bookmark: WhatsNewInThisRelease][bookmark: ISE]This document explains the Cisco Validated Design and Deployment details for GPT-in-a-Box solution on Cisco Compute Hyperconverged with Nutanix. The solution presented in this document will address design, reference architecture, and deployment for a predictable, scalable, secure, high-performance and cloud native solution aimed at conversational ChatGPT-like experience empowered by organization’s internal documents and data on-premises ensuring operational simplicity and ease.

 This validated design is just one example of a supported GPT configuration. You can design and build a GPT solution in many ways, and you can deviate from this specific configuration while still following CVD best practices.

 [bookmark: Audience]Audience

 [bookmark: DNAC_Software]The intended audience of this document includes IT decision makers like CTOs and CIOs, IT architects and customers who are working on or interested in design, deployment, and life cycle management of generative AI systems and applications.

 [bookmark: Solution_Summary]Solution Summary

 GPT-in-a-Box on is a new turnkey solution that includes everything needed to build AI-ready infrastructure. AI applications can be easily deployed on top of GPT-in-a-Box.

 Cisco Compute Hyperconverged with Nutanix GPT-in-a-Box solution is a reference architecture that combines:

 ● Nutanix GPT-in-a-Box software-defined solution

 ● Cisco Compute Hyperconverged C-Series Servers

 ● HCIAF240C M7 All-NVMe server with 2x NVIDIA L40S GPU either in UCS Managed Mode or Intersight Standalone mode

 ● Nutanix Prism Central for deploying and managing solution software components

 ● A range of the most popular large language models

 GPT-in-a-Box solution software component includes:

 ● Uses NKE as Kubernetes Platform and Nutanix Unified Storage (NUS)

 ● Leverages NAI-LLM inference endpoint

 ● Integrates with Nutanix Objects Event Notification

 Some highlights of the solution include the following:

 ● AI-ready platform to enable customers to quickly design, size, and deploy an on-prem AI solution

 ● Quickly deploy off-the-shelf AI applications or empower developers to build their own

 ● A single-cloud operating model using Nutanix Cloud Platform hyperconverged infrastructure with graphic processing units (GPUs)

 ● Nutanix Unified Storage (NUS) for total data management, security, privacy, and resilience

 ● Support for popular AI/ML frameworks

 ● LLM freedom of choice

 [bookmark: Technology_Overview][bookmark: _Toc94534589][bookmark: Operational_Planes]Retrieval Augmented Generation: Concepts and Components

 This chapter contains the following:

 ● What is Generative AI?

 ● What is Generative AI Inferencing?

 ● Large Language Models

 ● Generative AI Workflow

 ● Retrieval Augmented Generation

 This chapter explains various concepts of Generative AI, including model development workflow, inferencing challenges and use cases.

 [bookmark: What_is_Generative_AI]What is Generative AI?

 Generative AI is a powerful branch of artificial intelligence that holds immense potential for addressing various challenges faced by enterprises. With generative AI, users and applications can quickly generate new content based on a variety of inputs; inputs and outputs to these models can include text, images, sounds, animation, 3D models, or other types of data. Due to the versatility of generative AI models, applications leveraging them can perform multiple tasks based on available data and inputs, increasing functionality beyond just text and image generation or chat-based Q&A.

 How Does Generative AI Compare to Traditional AI?

 Generative AI can create new content, chat responses, designs, synthetic data, and more. Traditional AI, on the other hand, is focused on detecting patterns, making decisions, honing analytics, classifying data, and detecting fraud.

 As more organizations recognize the value of using AI to create new content, they’re now exploring large language models (LLMs) and other generator models. Since there are pretrained LLMs available, known as foundation models, adopting generative AI requires less upfront training compared with traditional AI models. This results in significant cost and time savings when developing, running, and maintaining AI applications in production.

 While 2023 has been the year of Generative AI with the introduction of ChatGPT and models like Stable Diffusion, the technology has been in development for some time. NVIDIA and other companies have been researching and innovating in this space for years, which has helped lead us to where we are today. Examples include StyleGAN (2018), which creates realistic images of people, and GauGAN (2019), which allows you to create fingerpaint-style images that instantly become realistic landscapes. NVIDIA has released an app based on this research called Canvas, and these technologies have been used broadly by ecosystem partners.

 [bookmark: What_is_Generative_AI_Inferencing]What is Generative AI Inferencing?

 Generative AI inferencing refers to the process of using a trained generative AI model (large language models and non-large language models) to generate new data or content based on input or contextual cues. During inferencing, the model applies its learned knowledge to produce outputs that are not direct repetitions of the training data but are rather novel creations generated by the model.

 The inferencing process is crucial for leveraging the generative capabilities of the models in practical applications. It allows users to obtain novel outputs by providing inputs or guiding the model's behavior based on specific requirements or constraints. The generated content can be used for various creative purposes, prototyping, or as a tool for exploration in different domains.

 The term "inferencing" in the context of generative AI is associated with generating content like:

 ● Text Generation

 ◦ Storytelling: Generative models can create fictional stories, narratives, or even entire chapters of books.

 ◦ Poetry and Prose: AI models can generate poetic verses, prose, or creative writing.

 ◦ Dialogues: Conversational agents powered by generative models can produce human-like dialogues.

 ● Image Generation

 ◦ Artistic Creations: Generative Adversarial Networks (GANs) can generate visually appealing and artistic images.

 ◦ Style Transfer: Models can transform images into different artistic styles.

 ◦ Face Synthesis: GANs can create realistic faces of non-existent individuals.

 ● Music Composition

 ◦ Melody Generation: AI models can compose original melodies and music.

 ◦ Genre-specific Music: Generative models can create music in specific genres, mimicking different styles.

 ● Code Generation

 ◦ Source Code: AI models can generate code snippets or even entire programs based on a given task or description.

 ● Language Translation

 ◦ Multilingual Text: Models like OpenAI's GPT can generate text in multiple languages.

 ◦ Translation: AI models can translate text from one language to another while preserving context.

 ● Content Summarization

 ◦ Text Summaries: Generative models can summarize large blocks of text into concise and coherent summaries.

 ● Content Completion

 ◦ Sentence Completion: AI models can complete sentences or paragraphs in a way that fits the context.

 ◦ Text Expansion: Generative models can expand on given ideas or concepts.

 ● Product Descriptions

 ◦ E-commerce Descriptions: AI models can generate product descriptions for e-commerce websites.

 ● Scientific Writing

 ◦ Research Abstracts: Models can generate abstracts or summaries of scientific research papers.

 ● Conversational Agents

 ◦ Chatbot Responses: AI-powered chatbots can generate responses in natural language during conversations.

 [bookmark: Large_Language_Models]Large Language Models

 Generative AI is a broad category that includes models designed to generate new and original content. This content can be in various forms, such as images, text, audio, or even video. Large language models are a specific subset of generative AI designed to understand and generate human language. They are primarily focused on natural language processing tasks.

 Large language models (LLMs) are a class of natural language processing models which uses deep learning methodologies to comprehend and generate human language. These models are trained in vast amounts of textual data to learn the patterns, structures, and nuances of language.

 One of the notable examples of LLMs is the GPT (Generative Pre-trained Transformer) series developed by OpenAI.

 Key features of large language models include:

 ● Scale: LLMs are characterized by their large number of parameters, often ranging from tens of millions to billions. The scale of these models allows them to capture complex linguistic patterns and generate diverse and contextually relevant text.

 ● Pre-training: LLMs are typically pre-trained on a massive corpus of text data before being fine-tuned for specific tasks. During pre-training, the model learns to predict the next word in a sentence or fill in missing words, which helps it acquire a broad understanding of language.

 ● Transformer Architecture: LLMs, including GPT, are built on the Transformer architecture, which enables efficient processing of sequential data. Transformers use self-attention mechanisms to capture relationships between words in a sentence, facilitating better context understanding.

 ● Transfer Learning: LLMs leverage transfer learning, where the knowledge gained during pre-training on a general language understanding task is transferred to specific tasks with minimal additional training. This approach allows these models to excel in a variety of natural language processing (NLP) applications.

 ● Fine-tuning: After pre-training, LLMs can be fine-tuned for specific tasks, such as text classification, language translation, summarization, and more. This fine-tuning process adapts the model to the nuances of the target application.

 ● Diverse Applications: Large Language Models find applications in a wide range of tasks, including but not limited to natural language understanding, text generation, sentiment analysis, machine translation, question answering, and chatbot development.

 The development of Large Language Models has significantly advanced the field of natural language processing, enabling the creation of sophisticated AI systems capable of understanding, and generating human-like text across various domains. However, ethical considerations, biases in training data, and potential misuse are important considerations associated with the deployment of these models.

 Model Parameters

 Model parameters are the internal variables or weights that the model learns during the training process. Weights are the coefficients that scale the input features in a neural network. In the context of LLMs, these weights determine the strength of connections between neurons in different layers. For example, in a transformer model, weights are associated with the attention mechanisms and transformations applied to input sequences.

 LLMs often consist of multiple layers, each with its set of weights and biases. In transformer architectures, these layers may include self-attention mechanisms and feedforward neural networks. The parameters of each layer capture different aspects of the input data.

 The total number of parameters in an LLM is a critical factor in its capacity to capture complex language patterns and nuances.

 [bookmark: Generative_AI_Workflow]Generative AI Workflow

 Typical Generative AI workflow starts with aligning to the business objectives while maintaining a concise and accurate technical focus in every stage.

 Business Strategy and Use Case Definition: Define generative AI objectives aligning with business goals.

 ● Key Tasks

 ◦ Identify use cases.

 ◦ Clearly define the generative task, whether it's image generation, text generation, style transfer, etc.

 ◦ Establish goals and success metrics.

 Data Preparation and Curation: Ensure high-quality, well-managed dataset availability.

 ● Key Tasks

 ◦ Gather a diverse and representative dataset for training the generative model.

 ◦ Data cleansing and labeling.

 ◦ Data aggregation and preprocessing.

 ◦ Increase the diversity of the training data through techniques like rotation, scaling, or flipping.

 ◦ Anonymization or synthetic data generation if required.

 ◦ Leveraging MLOps platforms for efficient data management.

 Model Training: Utilize accelerated infrastructure for efficient training.

 ● Key Tasks

 ◦ Training from scratch or selecting pretrained models.

 ◦ Allocating heavy computational resources.

 ◦ Optimizing performance with validated, high-performance infrastructure.

 Model Customization: Fine-tuning, prompt learning (including prompt tuning and P-tuning), transfer learning, reinforcement learning.

 ● Key Tasks

 ◦ Adapt pretrained models to specific business needs.

 ◦ Implement customization methods based on requirements.

 Inferencing: Deploy and operate trained models for ongoing generation.

 ● Key Tasks

 ◦ Scale computing resources (scaling up or out) based on demand.

 ◦ Iterate on inferencing based on new data and customization opportunities.

 ◦ Continuous monitoring of inferencing performance.

 ◦ Identification and optimization of opportunities for further customization and fine-tuning.

 This workflow emphasizes technical aspects, highlighting the importance of infrastructure efficiency, model customization techniques, and ongoing optimization in the inferencing phase.

 [bookmark: Retrieval_Augmented_Generation]Retrieval Augmented Generation (RAG)

 This design is mainly focused on Retrieval Augmented Generation which is an application of Generative AI in the enterprises. RAG is a class of LLM applications that use external data to augment the LLM’s context.

 Limitation of Large Language Models

 As the usage of Large Language Models exploded, some of the prominent weakness of the system became bottleneck for utilizing it in the enterprise space. Even though these LLMs are trained on vast amount of data, the information used to generate the response is limited only to the data used during training. If you take corporate AI chatbot as example, we can’t use LLMs directly because it will not have specific information of organization’s internal data or services. This lack of domain specific data or organization specific data blocks it from using it for enterprise applications.

 Some limitations are:

 ● Main one is the hallucination. While LLM can generate fluent text on various topics and domains, they are also prone to just make the stuff up. Hallucinations are outputs of LLMs that deviate from facts. It can range from minor inconsistencies or completely fabricated or contradictory statements.

 ● There is a knowledge cutoff date and any event that happened post that date, that information is not available in the model and LLM will not be able to provide an accurate answer for them.

 ● Many of the models are generic models for language tasks. They lack domain specific data.

 How can RAG help?

 RAG generates up-to-date and domain-specific answers by connecting a LLM to enterprise data. It is architecture used to optimize the output of LLMs with dynamic domain specific data fetched from external sources.

 RAG Pipeline

 Figure 1 illustrates the RAG Pipeline overview.

 [bookmark: Fig1]Figure 1.
 RAG Pipeline Overview

 [image: A diagram of a computer processDescription automatically generated]

 In this pipeline, when you enter a prompt/query, document chunks relevant to the prompt are searched and fetched to the system. The retrieved relevant information is augmented to the prompt as context. LLM is asked to generate a response to the prompt in the context and the user receives the response.

 Generic RAG Architecture

 RAG is an end-to-end architecture that combines information retrieval component with response generator.

 [image: A diagram of a software pipelineDescription automatically generated]

 RAG can be broken into two pipelines, document ingestion pipeline and Inference serving pipeline.

 Document Ingestion Pipeline

 Figure 2 illustrates the document ingestion pipeline.

 [bookmark: Fig2]Figure 2.
 Document Ingestion Pipeline Overview

 [image: A screenshot of a computerDescription automatically generated]

 The process for the document ingestion pipeline is as follows:

 1. The first step in the document ingestion pipeline is loading data. Raw data from various sources are ingested into RAG system. These data could be PDFs, word docs, HTML, even YouTube transcripts and much more.

 2. Next is Tokenization, where these pieces of text are broken down into smaller units, called tokens. Tokens are the minimum unit to measure what is done with LLMs. Data needs to be transformed into a numerical representation because models learn to understand the semantic relationships between these tokens.

 3. When the document is loaded, the next step is chunking, which breaks down long text into smaller segments. This is necessary since LLMs have a limit on the context window. Also, smaller chunks assist with better indexing and faster search.

 4. Next is Vector embedding, which is a technique used extensively in natural language processing to represent words or phrases as vectors of numbers called embedding dimension. Vectors are designed to capture semantic relationships between words which means Words with similar meanings are represented by vectors that are close together in the embedding space.

 5. Created embeddings will be stored in a special database called as vector databases. These vector database enables fast retrieval and similarity search. These ensures that the LLMs have access to the most relevant and contextually appropriate information.

 Inference Serving Pipeline

 Figure 3 illustrates the inference serving pipeline.

 [bookmark: Fig3]Figure 3.
 Inference Serving Pipeline Overview

 [image: A diagram of a diagramDescription automatically generated]

 The process for the inference serving pipeline is as follows:

 1. Prompt is passed to an LLM orchestrator.

 2. Orchestrator sends a search query to the retriever.

 3. Retriever fetches relevant information from the knowledge base.

 4. Retriever sends back the retrieved information to the orchestrator.

 5. Orchestrator augments the prompt with the context and sends it to the LLM.

 6. LLM responds with generated text, displayed to the user using the orchestrator.

 Technology Overview

 This chapter contains the following:

 ● Cisco Intersight Platform

 ● Cisco Unified Computing System

 ● Cisco Compute Hyperconverged with Nutanix

 ● NVIDIA GPUs and GPU Operator

 [bookmark: Cisco_Intersight_Platform][bookmark: _Toc168037793]Cisco Intersight Platform

 As applications and data become more distributed from core data center and edge locations to public clouds, a centralized management platform is essential. IT agility will be a struggle without a consolidated view of the infrastructure resources and centralized operations. Cisco Intersight provides a cloud-hosted, management and analytics platform for all Cisco Compute for Hyperconverged, Cisco UCS, and other supported third-party infrastructure deployed across the globe. It provides an efficient way of deploying, managing, and upgrading infrastructure in the data center, ROBO, edge, and co-location environments.

 [image: A diagram of a computer networkDescription automatically generated]

 Cisco Intersight provides:

 ● No Impact Transition: Embedded connector (Cisco HyperFlex, Cisco UCS) will allow you to start consuming benefits without forklift upgrade.

 ● SaaS/Subscription Model: SaaS model provides for centralized, cloud-scale management and operations across hundreds of sites around the globe without the administrative overhead of managing the platform.

 ● Enhanced Support Experience: A hosted platform allows Cisco to address issues platform-wide with the experience extending into TAC supported platforms.

 ● Unified Management: Single pane of glass, consistent operations model, and experience for managing all systems and solutions.

 ● Programmability: End to end programmability with native API, SDK’s and popular DevOps toolsets will enable you to deploy and manage the infrastructure quickly and easily.

 ● Single point of automation: Automation using Ansible, Terraform, and other tools can be done through Intersight for all systems it manages.

 ● Recommendation Engine: Our approach of visibility, insight and action powered by machine intelligence and analytics provide real-time recommendations with agility and scale. Embedded recommendation platform with insights sourced from across Cisco install base and tailored to each customer.

 For more information, go to the Cisco Intersight product page on cisco.com.

 [bookmark: _Toc168037794]Cisco Intersight Virtual Appliance and Private Virtual Appliance

 In addition to the SaaS deployment model running on Intersight.com, you can purchase on-premises options separately. The Cisco Intersight virtual appliance and Cisco Intersight private virtual appliance are available for organizations that have additional data locality or security requirements for managing systems. The Cisco Intersight virtual appliance delivers the management features of the Cisco Intersight platform in an easy-to-deploy VMware Open Virtualization Appliance (OVA) or Microsoft Hyper-V Server virtual machine that allows you to control the system details that leave your premises. The Cisco Intersight private virtual appliance is provided in a form factor designed specifically for users who operate in disconnected (air gap) environments. The private virtual appliance requires no connection to public networks or to Cisco network.

 [bookmark: _Toc168037795]Licensing Requirements

 The Cisco Intersight platform uses a subscription-based license with multiple tiers. You can purchase a subscription duration of 1, 3, or 5 years and choose the required Cisco UCS server volume tier for the selected subscription duration. Each Cisco endpoint automatically includes a Cisco Intersight Base license at no additional cost when you access the Cisco Intersight portal and claim a device. You can purchase any of the following higher-tier Cisco Intersight licenses using the Cisco ordering tool:

 ● Cisco Intersight Essentials: Essentials includes all the functions of the Base license plus additional features, including Cisco UCS Central software and Cisco Integrated Management Controller (IMC) supervisor entitlement, policy-based configuration with server profiles, firmware management, and evaluation of compatibility with the Cisco Hardware Compatibility List (HCL).

 ● Cisco Intersight Advantage: Advantage offers all the features and functions of the Base and Essentials tiers. It also includes storage widgets and cross-domain inventory correlation across compute, storage, and virtual environments (VMware ESXi). OS installation for supported Cisco UCS platforms is also included.

 Servers in the Cisco Intersight managed mode require at least the Essentials license. For more information about the features provided in the various licensing tiers, go to: https://www.intersight.com/help/saas/getting_started/licensing_requirements

 [bookmark: Cisco_Unified_Computing_System]Cisco Unified Computing System

 Cisco Unified Computing System (Cisco UCS) is a next-generation datacenter platform that integrates computing, networking, storage access, and virtualization resources into a cohesive system designed to reduce total cost of ownership and increase business agility. The system integrates a low-latency, lossless 10-100 Gigabit Ethernet unified network fabric with enterprise-class, x86-architecture servers. The system is an integrated, scalable, multi-chassis platform with a unified management domain for managing all resources.

 Cisco Unified Computing System consists of the following subsystems:

 ● Compute—The compute piece of the system incorporates servers based on the Fourth Generation Intel Xeon Scalable processors. Servers are available in blade and rack form factor, managed by Cisco UCS Manager.

 ● Network—The integrated network fabric in the system provides a low-latency, lossless, 10/25/40/100 Gbps Ethernet fabric. Networks for LAN, SAN and management access are consolidated within the fabric. The unified fabric uses the innovative Single Connect technology to lower costs by reducing the number of network adapters, switches, and cables. This in turn lowers the power and cooling needs of the system.

 ● Virtualization—The system unleashes the full potential of virtualization by enhancing the scalability, performance, and operational control of virtual environments. Cisco security, policy enforcement, and diagnostic features are now extended into virtual environments to support evolving business needs.

 [bookmark: Cisco_UCS_Differentiators]Cisco UCS Differentiators

 Cisco Unified Computing System is revolutionizing the way servers are managed in the datacenter. The following are the unique differentiators of Cisco Unified Computing System and Cisco UCS Manager:

 ● Embedded Management—In Cisco UCS, the servers are managed by the embedded firmware in the Fabric Inter-connects, eliminating the need for any external physical or virtual devices to manage the servers.

 ● Unified Fabric—In Cisco UCS, from blade server chassis or rack servers to FI, there is a single Ethernet cable used for LAN, SAN, and management traffic. This converged I/O results in reduced cables, SFPs and adapters – reducing capital and operational expenses of the overall solution.

 ● Auto Discovery—By simply inserting the blade server in the chassis or connecting the rack server to the fabric interconnect, discovery and inventory of compute resources occurs automatically without any management intervention. The combination of unified fabric and auto-discovery enables the wire-once architecture of Cisco UCS, where compute capability of Cisco UCS can be extended easily while keeping the existing external connectivity to LAN, SAN, and management networks.

 [bookmark: Cisco_UCS_Manager]Cisco UCS Manager

 Cisco UCS Manager (UCSM) provides unified, integrated management for all software and hardware components in Cisco UCS. Using Cisco Single Connect technology, it manages, controls, and administers multiple chassis for thousands of virtual machines. Administrators use the software to manage the entire Cisco Unified Computing System as a single logical entity through an intuitive graphical user interface (GUI), a command-line interface (CLI), or through a robust application programming interface (API).

 [bookmark: Physical_Components][bookmark: Install_Configure][bookmark: _Toc94534591][bookmark: _Toc94534590][bookmark: Cisco_Compute_Hyperconverged_Nutanix]Cisco Compute Hyperconverged with Nutanix

 Cisco and Nutanix have come together to offer the industry’s most simple, comprehensive HCI solution. The Cisco Compute Hyperconverged with Nutanix solution combines the Cisco Unified Computing Systems (UCS) innovative server, networking, and SaaS management with Nutanix’s leading HCI foundation, offering a fully integrated and validated system with flexible deployment options and a unified, enhanced support model backed by two world-class organizations.

 The solution offers the following key benefits:

 ● Complete simplicity: The solution offers both SaaS and on-premises management options and includes day-0 through day-N operations, including service profiles for compute, storage, and networking customized for Nutanix to help simplify and accelerate cluster deployment and deliver better performance and resiliency. This also includes preinstalled software configured with a choice of hypervisor for a faster, easier start. Cisco and Nutanix combined and complementary cloud operating models provide control, visibility, and consistency across highly distributed IT environments, including fully integrated cluster installation, expansion, and end-to-end software and firmware upgrades. To simplify the buying experience, the complete solution can be ordered and delivered from Cisco.

 ● Complete flexibility: The Cisco Compute Hyperconverged with Nutanix solution addresses modern applications and use cases, offering multiple choices in UCS server deployment options, the latest accelerator and drive technologies, and SaaS innovations from two industry powerhouses, including integrations with the leading public cloud providers. Additionally, the solution incorporates Cisco's best-in-class networking technology, including Cisco ACI integrations, to enhance performance and resiliency for data-intensive workloads in hybrid cloud environments.

 ● Complete resiliency: The joint solution utilizes only enterprise-grade components and offers augmented system protection with a collaborative support model and proactive, automated resilience and security capabilities. This includes integrated support systems and case notes for faster triage. Any time log files are uploaded, or case notes are generated, that information is shared, enabling enhanced collaboration among support teams to resolve issues faster and provide an improved customer experience. Our policy-based approach minimizes human error and configuration drift, resulting in consistent, reliable cluster deployments.

 It also enforces overall security posture through centralized authorizations, preventing tampering of configurations.

 [bookmark: Fig4]Figure 4.
 Complete simplicity, flexibility, and resiliency

 [image: A diagram of a cloud computing systemDescription automatically generated]

 HCIAF240C M7 All-NVMe/All-Flash Servers

 The Cisco Compute Hyperconverged HCIAF240C M7 All-NVMe/All-Flash Servers extends the capabilities of Cisco’s Compute Hyperconverged portfolio in a 2U form factor with the addition of the 4th Gen Intel® Xeon® Scalable Processors (codenamed Sapphire Rapids), 16 DIMM slots per CPU for DDR5-4800 DIMMs with DIMM capacity points up to 256GB.

 The All-NVMe/all-Flash Server supports 2x 4th Gen Intel® Xeon® Scalable Processors (codenamed Sapphire Rapids) with up to 60 cores per processor. With memory up to 8TB with 32 x 256GB DDR5-4800 DIMMs, in a 2-socket configuration. There are two servers to choose from:

 ● HCIAF240C-M7SN with up to 24 front facing SFF NVMe SSDs (drives are direct-attach to PCIe Gen4 x2)

 ● HCIAF240C-M7SX with up to 24 front facing SFF SAS/SATA SSDs

 For more details, go to: HCIAF240C M7 All-NVMe/All-Flash Server specification sheet

 [bookmark: _Toc145434544]
 [bookmark: Fig5]Figure 5.
 Front View: HCIAF240C M7 All-NVMe/All-Flash Servers

 [image: A row of computer serversDescription automatically generated]

 [bookmark: NVIDIA_GPUs_GPU_Operator][bookmark: NVIDIA_GPUs]NVIDIA GPUs and GPU Operator

 This solution provides a reference architecture for GPT-In-Box in the enterprises using NVIDIA L40S GPUs.

 NVIDIA L40S GPU

 The NVIDIA L40S GPU is the most powerful universal GPU for the data center, delivering end-to-end acceleration for the next generation of AI-enabled applications—from gen AI, LLM inference, small-model training and fine-tuning to 3D graphics, rendering, and video applications.

 The L40S GPU is optimized for 24/7 enterprise data center operations and designed, built, tested, and supported by NVIDIA to ensure maximum performance, durability, and uptime. The L40S GPU meets the latest data center standards, is Network Equipment-Building System (NEBS) Level 3 ready, and features secure boot with root of trust technology, providing an additional layer of security for data centers.

 [bookmark: Table1]Table 1. NVIDIA L40S Tensor Core GPU Specifications

 	

 	 L40S PCIe GPU

 	 GPU Architecture

 	 NVIDIA Ada Lovelace Architecture

 	 GPU Memory

 	 48GB GDDR6 with ECC

 	 GPU Memory Bandwidth

 	 864GB/s

 	 Interconnect Interface

 	 PCIe Gen4 x16: 64GB/s bidirectional

 	 NVIDIA Ada Lovelace Architecture-Based CUDA® Cores

 	 18,176

 	 NVIDIA Third-Generation RT Cores

 	 142

 	 NVIDIA Fourth-Generation Tensor Cores

 	 568

 	 RT Core Performance TFLOPS

 	 209

 	 FP32 TFLOPS

 	 91.6

 	 TF32 Tensor Core TFLOPS

 	 183 | 366

 	 BFLOAT16 Tensor Core TFLOPS

 	 362.05 | 733

 	 FP16 Tensor Core

 	 362.05 | 733

 	 FP8 Tensor Core

 	 733 | 1,466

 	 Peak INT8 Tensor TOPS

 	 733 | 1,466

 	 Peak INT4 Tensor TOPS

 	 733 | 1,466

 	 Form Factor

 	 4.4" (H) x 10.5" (L), dual slot

 	 Display Ports

 	 4x DisplayPort 1.4a

 	 Max Power Consumption

 	 350W

 	 Power Connector

 	 16-pin

 	 Thermal

 	 Passive

 	 Virtual GPU (vGPU) Software Support Yes

 	 Yes

 	 NVENC | NVDEC

 	 3x | 3x (includes AV1 encode and decode)

 	 Secure Boot With Root of Trust

 	 Yes

 	 NEBS Ready

 	 Level 3

 	 MIG Support

 	 No

 	 NVIDIA® NVLink® Support

 	 No

 [bookmark: NVIDIA_GPU_Operator]NVIDIA GPU Operator

 Figure 6 illustrates the NVIDIA GPU Operator overview.

 [bookmark: Fig6]Figure 6.
 NVIDIA GPU Operator Overview

 [image: A diagram of a computer hardwareDescription automatically generated]

 Kubernetes provides access to special hardware resources such as NVIDIA GPUs, NICs, Infiniband adapters and other devices through the device plugin framework. However, configuring and managing nodes with these hardware resources requires configuration of multiple software components such as drivers, container runtimes or other libraries which are difficult and prone to errors. The NVIDIA GPU Operator uses the operator framework within Kubernetes to automate the management of all NVIDIA software components needed to provision GPU. These components include the NVIDIA drivers (to enable CUDA), Kubernetes device plugin for GPUs, the NVIDIA Container Toolkit, automatic node labelling using GFD, DCGM based monitoring and others.

 [bookmark: Solution_Design][bookmark: Fig40]Solution Design

 This chapter contains the following:

 ● Solution Overview

 ● Infrastructure Design

 ● Network Design

 ● Cluster Design

 ● Storage Design

 ● Nutanix Files and Objects Design

 ● Management Design

 ● Security and Compliance

 ● Kubernetes Cluster Design

 ● Large Language Model Design

 ● Backup and Disaster Recovery

 [bookmark: Requirements][bookmark: Solution_Topology][bookmark: Solution_Design_Overview]Solution Overview

 This solution provides a foundational reference architecture for AI-ready platform to enable customers to quickly design, size, and deploy an on-prem AI solution. The key design components configured in this solution are elaborated in Figure 7.

 [bookmark: Fig7]Figure 7.
 GPT-in-a-Box Solution Design

 [image: Diagram of a serverDescription automatically generated]

 This design includes the following hardware and software components:

 ● Single availability zones (AZs) in a single region in an on-premises Cisco Compute Hyperconverged (CCHC) with Nutanix cluster

 ● The CCHC with Nutanix (AHV) cluster with a minimum of four (4) nodes of HCIAF240C M7 All-NVMe servers with each node enabled with 2x NVIDIA L40S: 350W, 48GB GPUs.

 ● The CCHC with Nutanix cluster host the following key Nutanix services

 ◦ Nutanix Unified Storage (NUS) to provide NFS storage and S3-compatible storage capabilities

 ◦ Nutanix Kubernetes Engine (NKE) cluster used for management, monitoring, and the persistent applications used by workload clusters

 Note: Nutanix Prism Central was hosted in a separate Nutanix AHV Cluster. Prism Central can be deployed either on the existing cluster or on a separate AHV based Nutanix cluster.

 Infrastructure Desi[bookmark: Infrastructure_Design]gn

 The deployment architecture for Cisco Compute Hyperconverged with Nutanix GPT-in-a-Box is detailed in the figure below. The entire Day 0 deployment is managed through workflow defined in the Nutanix Foundation VM.

 CCHC with Nutanix cluster for GPT-in-a-box is managed through Prism Central deployed on a separate Nutanix AHV cluster. Prism Central can also be deployed on the same Nutanix Cluster hosted GPT-in-a-Box solution.

 The HCIAF240C M7 All-NVMe nodes are connected to a pair of Cisco UCS 6536 Fabric Interconnect in UCS Managed mode.

 Each HCIAF240C M7 All-NVMe server is configured with:

 ● 2x Intel I6442Y processor (2.6GHz/225W 24C/60MB)

 ● 1 TB DDR5 memory (32x 32GB DDR5-4800 RDIMM)

 ● 2x 240GB M.2 card managed through M.2 RAID controller

 ● 6x 3.8 TB NVMe

 ● 1x Cisco VIC 15238 2x 40/100/200G mLOM

 ● 2x NVIDIA L40S: 350W, 48GB GPUs

 Go to the Bill of Materials (BoM) section for the complete specifications of the infrastructure deployed to validate this solution.

 Figure 8 illustrates the hardware deployment architecture for Cisco Compute Hyperconverged with Nutanix GPT-in-a-Box.

 [bookmark: Fig8]Figure 8.
 Infrastructure Design

 [image: A diagram of a computer serverDescription automatically generated]

 The solution features a single availability zones (AZs) in a single region in an on-premises data center:

 ● A single Nutanix cluster that hosts the following services, among others:

 ◦ Nutanix management components, including Prism Central

 ◦ NUS to provide NFS storage and S3-compatible storage capabilities

 ◦ NKE clusters used for the GPT workloads

 ◦ NKE cluster used for management, monitoring, and the persistent applications used by workload clusters

 [bookmark: Fig9]Figure 9.
 GPT-in-a-Box Conceptual Design

 [image: A diagram of different types of appsDescription automatically generated]

 VLAN Configuration

 Table 2 lists VLANs configured for the existing solution.

 [bookmark: _Ref85207457][bookmark: Table2]Table 2. VLAN Usage

 	 VLAN ID

 	 Name

 	 Usage

 	 IP Subnet used in this deployment

 	 2

 	 Native-VLAN

 	 Use VLAN 2 as native VLAN instead of default VLAN (1).

 	

 	 1080

 	 OOB-MGMT-VLAN

 	 Out-of-band management VLAN to connect management ports for various devices

 	 10.108.0.0/24; GW: 10.108.0.254

 	 1081

 	 NTNX-VLAN

 	 VLAN utilized for Nutanix Cluster Management, Files & Objects Services, and Nutanix Kubernetes deployment

 	 10.108.1.0/24; GW: 10.108.1.254

 Table 3 lists the IP Address Assignment for the solution.

 [bookmark: _Ref1555689][bookmark: Table3]Table 3. Virtual Machines

 	 Type

 	 VLAN

 	 IP Address Range

 	 DNS Entries

 	 Comments

 	 UCS Management

 	 1080

 	 10.108.0.110-120

 	

 	 UCS Management and Out of Band Server Management

 	 GPT-in-a-Box Nutanix Cluster

 	 1081

 	 10.108.1.121-130

 	

 	 Nutanix Nodes AHV, CVM, iSCSI Data Service and Cluster VIP

 	 Prism Central

 	 1081

 	 10.108.1.140

 	 prismcentral0.rtp4.local

 	 Prism Central hosted on a separate AHV Nutanix Cluster

 	 File Server

 	 1081

 	 10.108.1.141

 	 fileserver-01.rtp4.local

 	 Hosted on GPT-in-a-Box cluster

 	 IPAM for object and File services

 	 1081

 	 10.108.1.171-180

 	

 	

 	 IPAM for Nutanix Kubernetes Services

 	 1081

 	 10.102.1.180-190

 	

 	 Configured on Prism Central

 	 Wild card subdomain for ngnix ingress to Kubernetes management cluster

 	 1081

 	 10.108.1.213-216

 	 *.ntnx-k8-mgmt.rtp4.local

 	 Entry in local DNS as Host Address record 10.108.1.213

 	 Wild card subdomain for ngnix ingress to Kubernetes workload cluster

 	 1081

 	 10.108.1.217-220

 	 *.ntnx-k8-workload.rtp4.local

 	 Entry in local DNS as Host Address record 10.108.1.21310.108.1.217

 	 Wildcard subdomain for llm end point

 	 1081

 	 10.108.1.218

 	 *.llm.ntnx-k8-workload.rtp4.local

 	 Entry in local DNS as Host Address record 10.108.1.218

 [bookmark: Software_Revisions][bookmark: _Toc52462351]Software Revisions

 Table 4 lists the software revisions for various components of the solution.

 [bookmark: _Ref1555597][bookmark: Table4]Table 4. Software Revisions

 	 Device

 	 Image Bundle

 	 Comments

 	 Cisco UCS 6536 Fabric Interconnect

 	 4.3(4a)

 	 Cisco UCS GA release for infrastructure including FIs and Server Firmware

 	 Cisco UCS HCIAF240C M7 All-NVMe server

 	 4.3(4c)

 	 4x HCIAF240C M7 All-NVMe nodes for GPT-in-a-Box cluster

 	 NVIDIA L40S: 350W, 48GB GPUs

 	 lcm_nvidia_20230302.2008_535.129.03

 	 Download from Nutanix Portal

 	 Nutanix AOS/AHV Cluster on UCS Managed HCIAF240C M7 All-NVMe server

 	 6.7.1.5

 	

 	 Prism Central hosted on separate Nutanix AHV cluster

 	 2023.4

 	

 	 NKE enabled through Nutanix marketplace and hosted on GPT-in-a-Box cluster

 	 1.26.8-0 (OS Image - ntnx-1.6.1)

 	

 	 Files enabled through Nutanix marketplace and hosted on GPT-in-a-Box cluster

 	 4.4.03

 	

 	 Objects enabled through Nutanix marketplace and hosted on GPT-in-a-Box cluster

 	 4.3.02

 	

 [bookmark: Network_Design]Network Design

 Cisco Compute Hyperconverged with Nutanix GPT-in-a-Box utilizes 100GbE end-to-end network.

 Figure 10 illustrates the network design used in this solution.

 [bookmark: Fig10]Figure 10.
 Network Design

 [image: A computer circuit board with wires and cablesDescription automatically generated with medium confidence]

 The key aspects of network design are as follows:

 ● Each of the HCIAF240C M7 All-NVMe server is connect to Cisco UCS 6536 Fabric Interconnect in UCS Managed Mode.

 ● Each node is equipped with 1x Cisco VIC 15238 2x 40/100/200G mLOM, a dual-port small-form-factor pluggable (QSFP/QSFP28/QSFP56) mLOM card which supports 40/100/200-Gbps Ethernet or FCoE.

 ● The network ports in the hypervisor are configured in Active-Passive Mode. These are configured automatically during automated cluster installation.

 ● The deployment in UCS Managed mode does not support bond mode 4 (LACP).

 ● Fabric Interconnect ports are separate from 100G Uplink ports and can be connected via the core LAN or through dedicated management network switch.

 [bookmark: Cluster_Design]Cluster Design

 The design incorporates a single GPU-enabled Nutanix cluster dedicated to GPT-in-a-Box workloads that offers access to large language models (LLMs). Supporting management applications like Prism Central and file and object storage are hosted on this cluster.

 Size the Nutanix GPT-in-a-Box cluster Controller VM (CVM) with 16 vCPU and 64 GB of memory.

 This design uses one region with a single AZ that hosts the GPT-in-a-Box cluster. This solution doesn't use any replication targets to protect the workloads because the focus is to host the GPT workloads in a single cluster.

 [bookmark: Fig11]Figure 11.
 GPT-in-a-Box Cluster Conceptual Architecture

 [image: A screenshot of a computerDescription automatically generated]

 [bookmark: Table5]Table 5. Cluster Design Decisions

 	 Design Option

 	 Validated Selection

 	 Cluster size

 	 Ensure the full redundancy of all components in the datacenter.

 	 CPU

 	 Use at least 24 cores and a high clock rate.

 	 Minimum cluster size

 	 Use at least 4 nodes.

 	 Cluster expansion

 	 Expand in increments of 1.

 	 Maximum cluster size

 	 Use at most 16 nodes.

 	 Networking

 	 Use 100 GbE networking.

 	 Cluster replication factor

 	 Use storage replication factor 2.

 	 Cluster high availability configuration

 	 Guarantee high availability.

 	 VM high availability

 	 Enable high availability reservation on the clusters.

 Cluster Resilience

 VM high availability ensures that VMs restart on another AHV host in the AHV cluster when a host becomes unavailable, either because the original AHV host has a complete failure or becomes network partitioned or because of an AHV host management process failure. When the AHV host where a VM is running becomes unavailable, the VM turns off; therefore, from the perspective of the VM operating system, VM high availability involves a full VM start cycle.

 [bookmark: Table6]Table 6. High Availability Configuration

 	 Feature

 	 Description

 	 Setting

 	 High availability reservation

 	 Guarantee compute failover capacity within cluster for application

 	 Enabled

 	 Rebuild capacity reservation

 	 Guarantee storage rebuild capacity within cluster

 	 Enabled

 [bookmark: Storage_Design]Storage Design

 Cisco Compute Hyperconverged with Nutanix GPT-in-a-Box utilizes a distributed, shared-nothing architecture for storage.

 Figure 12 illustrates the storage design used in this solution.

 [bookmark: Fig12]Figure 12.
 Storage Design

 [image: A diagram of a storage containerDescription automatically generated]

 When creating the Nutanix AHV cluster, the following storage containers are automatically created:

 ● NutanixManagementShare: Used for Nutanix features like Files and Objects and other internal storage needs; doesn't store workload vDisks

 ● SelfServiceContainer: Used by the NCM Self-Service Portal to provision VMs

 ● Default-Container-XXXX: Used by VMs to store vDisks for user VMs and applications

 In addition to the automatically created storage containers, the following additional storage containers are created during the Nutanix Files and Objects deployment:

 ● NTNX_<fileserver_name>_ctr: Provides storage for the file server instances, which provide NFS storage for the application tier

 ● objectsd<uniqueidentifier>: Data container for Nutanix Objects

 ● objectsm<uniqueidentifier>: Metadata container for Nutanix Objects

 The Default-Container stores VMs and their vDisks. The additional containers for Nutanix Files and Objects are created throughout the deployment process of the respective components.

 Note: To increase the effective capacity of the cluster, the design enables inline compression on all storage containers. It doesn't use additional functionalities such as deduplication or erasure coding. Replication factor 2 protects against the loss of a single component in case of failure or maintenance.

 Data Reduction and Resilience Options

 To increase the effective capacity of the cluster, the design enables inline compression on all storage containers. It doesn't use additional functionalities such as deduplication or erasure coding. Replication factor 2 protects against the loss of a single component in case of failure or maintenance.

 [bookmark: Table7]Table 7. Data Reduction Settings

 	 Container

 	 Compression

 	 Deduplication

 	 Erasure Coding

 	 Replication Factor

 	 Default-Container-XXXX

 	 On

 	 Off

 	 Off

 	 2

 	 NutanixManagementShare

 	 On

 	 Off

 	 Off

 	 2

 	 SelfServiceContainer

 	 On

 	 Off

 	 Off

 	 2

 	 NTNX_files_ctr

 	 On

 	 Off

 	 Off

 	 2

 	 objects containers

 	 On

 	 Off

 	 Off

 	 2

 Table 8 provides information about the storage decisions made for this design.

 [bookmark: Table8]Table 8. Storage Design Decisions

 	 Design Option

 	 Validated Selection

 	 Sizing a cluster

 	 Use an all-flash cluster to provide low-latency, high-throughput storage to support the application's active data set.

 	 Node type vendors

 	 Don't mix node types from different vendors in the same cluster.

 	 Node and disk types

 	 Use similar node types that have similar disks. Don't mix nodes that contain NVMe SSDs in the same cluster with hybrid SSD or HDD nodes.

 	 Sizing for node redundancy for storage and compute

 	 Size all clusters for n + 1 failover capacity.

 	 Fault tolerance and replication factor settings

 	 Configure the cluster for fault tolerance 1 and configure the container for replication factor 2.

 	 Inline compression

 	 Enable inline compression.

 	 Deduplication

 	 Don't enable deduplication.

 	 Erasure coding

 	 Don't enable erasure coding.

 	 Availability domain for cluster

 	 Use node awareness.

 	 Storage containers in cluster

 	 The cluster has the following storage containers: NutanixManagementShare, SelfServiceContainer, Default-Container, NTNX_files_ctr, and the two objects storage containers.

 	 Reserve rebuild capacity

 	 Enable reserve rebuild capacity.

 [bookmark: Nutanix_Files_Objects_Design]Nutanix Files and Objects Design

 Cisco Compute Hyperconverged with Nutanix GPT-in-a-Box utilizes Nutanix Files providing high-performance, shared storage to applications using the NFS protocol. Nutanix Files temporarily stores the LLMs and makes them available across VMs and Kubernetes services.

 Nutanix Objects provides S3-compatible storage capabilities to the application and enables users to upload new data models.

 Nutanix Files and Objects run on the same Nutanix cluster as the GPT-in-a-Box workloads. Prism Central is utilizes to deploy and manage all the components

 Note: If you plan to expand the environment, you can also run Nutanix Files or Nutanix Objects in a dedicated cluster.

 Figure 13 lists the Nutanix Files and Objects design. The VM displayed in Figure 13 is an end user or jump host used to mount the NFS share and store the LLMs.

 [bookmark: Fig13]Figure 13.
 Files and Objects Design

 [image: Diagram of a prism elementDescription automatically generated]

 Nutanix Files and Objects have the following network requirements:

 ● For maximum performance, the storage network for Nutanix Files uses the same subnet as the CVMs.

 ● To maximize security, the client network connects to a separate subnet.

 ● The GPT-in-a-Box cluster that provides a single file server instance requires three storage network IP addresses and four client network IP addresses for its three file server VMs (FSVMs).

 Nutanix Objects runs as a containerized service on a Kubernetes microservices platform, which provides benefits such as increased velocity of new features. Several of the required storage IP addresses are for functions related to the underlying microservices platform. You must also manage these networks. Nutanix Objects with three worker nodes requires seven storage network IP addresses and two client network IP addresses.

 Each cluster provisioned by NKE has minimum IP address requirements. A Kubernetes cluster in a production-level layout with three worker nodes requires one static IP address and eight or more IPAM addresses.

 The client network provides all IP addresses. You might need additional IPAM addresses for additional worker nodes.

 For more information, go to: Nutanix Files, Nutanix Objects, and Nutanix Kubernetes Engine Network Design

 Table 9 lists information about the Nutanix Files and Objects decisions made for this design.

 [bookmark: Table9]Table 9. GPT-in-a-Box Files Design Decisions

 	 Design Option

 	 Validated Selection

 	 FSVM cluster size

 	 Use 3 FSVMs.

 	 vCPU and memory for FSVM

 	 Use 12 vCPU and 64 GB of memory for each FSVM.

 	 Storage networking

 	 Keep the storage network in the same subnet as the CVMs and AHV.

 	 Client networking

 	 Use a separate subnet to provide client access to storage.

 	 Fault tolerance and replication factor settings

 	 Configure the cluster for fault tolerance 1 and configure the container for replication factor 2.

 	 Storage containers

 	 Use a separate storage container to host NUS files.

 	 Erasure coding

 	 Don't enable erasure coding.

 	 Compression

 	 Enable compression.

 	 Deduplication

 	 Don't enable deduplication.

 	 Shares to create

 	 Create 1 share: llm-repo

 	 Protocols for shares

 	 Use NFS for shares.

 For more information, go to: Nutanix Files and Nutanix Objects Design Decisions

 [bookmark: Table10]Table 10. GPT-in-a-Box Objects Design Decisions

 	 Design Option

 	 Validated Selection

 	 Nutanix Objects cluster size

 	 Use 3 worker nodes and 2 load balancer nodes.

 	 Worker node size

 	 Use 10 vCPU and 32 GB of memory for each worker node.

 	 Load balancer node size

 	 Use 2 vCPU and 4 GB of memory for each load balancer node.

 	 Storage networking

 	 Keep the storage network in the same subnet as the CVMs and AHV.

 	 Client networking

 	 Use a separate subnet to provide client access to storage.

 	 Fault tolerance and replication factor settings

 	 Configure the cluster for fault tolerance 1 and configure the container for replication factor 2.

 	 Storage containers

 	 Use a separate storage container to host NUS Objects.

 	 Erasure coding

 	 Don't enable erasure coding.

 	 Compression

 	 Enable compression.

 	 Deduplication

 	 Don't enable deduplication.

 	 Buckets to create

 	 Create 3 buckets: milvus (vector database), documents (for end-user access), and backup (backup target).

 [bookmark: Management_Design]Management Design

 Management components such as Cisco UCS Manager, Prism Central, Active Directory, DNS, and NTP are critical services that must be highly available. Prism Central is the global control plane for Nutanix, responsible for VM management, application orchestration, micro segmentation, and other monitoring and analytics functions.

 This solution utilizes two key management plane:

 ● Cisco UCS Manager supports the entire Cisco UCS server. It enables server, fabric, and storage provisioning as well as, device discovery, inventory, configuration, diagnostics, monitoring, fault detection, auditing, and statistics collection.

 ● Prism Central was deployed as single VM on a separate Nutanix AHV cluster. Prism Central manages:

 ◦ Nutanix Kubernetes Engine

 ◦ Nutanix Files and Objects

 ◦ VMs

 ◦ RBAC

 ◦ Monitoring, observability, and auditing for the core Nutanix Services

 DNS Management

 Name resolution and SSL certificate management are critical to deploying and managing Kubernetes clusters. In this solution, DNS root domain is hosted locally on a windows DNS server. Subdomains map the DNS and route the traffic to the Kubernetes clusters.

 Monitoring

 Monitoring in the solution falls into two categories: event monitoring and performance monitoring. Each category addresses different needs and issues.

 In a highly available environment, you must monitor events to maintain high service levels. When faults occur, the system must raise alerts on time so that administrators can take remediation actions as soon as possible. This solution configures the Nutanix platform's built-in ability to generate alerts in case of failure.

 In addition to keeping the platform healthy, maintaining a healthy level of resource usage is also essential to the delivery of a high-performing environment. Performance monitoring continuously captures and stores metrics that are essential when you need to troubleshoot application performance. A comprehensive monitoring approach tracks the following areas:

 ● Application and database metrics

 ● Operating system metrics

 ● Hyperconverged platform metrics

 ● Network environment metrics

 ● Physical environment metrics

 By tracking a variety of metrics in these areas, the Nutanix platform can also provide capacity monitoring across the stack. Most enterprise environments inevitably grow, so you need to understand resource usage and the rate of expansion to anticipate changing capacity demands and avoid any business impact caused by a lack of resources.

 Monitoring Conceptual Design

 In this design, Prism Central performs event monitoring for the Nutanix core infrastructure. This design uses syslog for log collection; for more information, see the Security and Compliance section. SMTP-based email alerts serve as the channel for notifications in this design. To cover situations where Prism Central might be unavailable, each Nutanix cluster in this design sends out notifications using SMTP as well. The individual Nutanix clusters send alerts to a different receiving mailbox that's only monitored when Prism Central isn't available.

 Logs from the Kubernetes cluster go to Nutanix Objects through a long-term S3 exporter and to the syslog server through a syslog exporter. The syslog server transmits the data to Prism Central using the User Datagram Protocol (UDP), and Prism Element transmits the data to Prism Central using an API. Prism Central then transmits the log to Nutanix Pulse (using the Secure Sockets Layer) and to the monitoring system, which sends the log to Nutanix Unified Storage using SMTP.

 [bookmark: Fig14]Figure 14.
 GPT-in-a-Box Monitoring Conceptual Design

 [image: A diagram of a computer serverDescription automatically generated]

 Prism Central monitors cluster performance in key areas such as CPU, memory, network, and storage usage, and captures these metrics by default. When a Prism Central instance manages a cluster, Prism Central transmits all Nutanix Pulse data, so it doesn't originate from individual clusters. When you enable Nutanix Pulse, it detects known issues affecting cluster stability and automatically opens support cases.

 [bookmark: Fig15]Figure 15.
 Hybrid Cloud Performance Metrics Systems

 [image: A diagram of a clusterDescription automatically generated]

 The network switches that connect the cluster also play an important role in cluster performance. A separate monitoring tool that's compatible with the deployed switches can capture switch performance metrics. For example, an SNMP-based tool can regularly poll counters from the switches.

 Table 11 provides descriptions of the monitoring design decisions.

 [bookmark: Table11]Table 11. Monitoring Design Decisions

 	 Design Option

 	 Validated Selection

 	 Platform performance monitoring

 	 Prism Central monitors Nutanix platform performance.

 	 Network switch performance monitoring

 	 A separate tool that performs SNMP polling to the switches monitors network switch performance.

 	 SMTP alerting

 	 Use SMTP alerting; use an enterprise SMTP service as the primary SMTP gateway for Prism Element and Prism Central.

 	 SMTP alerting source email address

 	 Configure the source email address to be clustername@<yourdomain>.com to uniquely identify the source of email messages. For Prism Central, use the Prism Central host name in place of cluster name.

 	 SMTP alerting Prism Central recipient email address

 	 Configure the Prism Central recipient email address to be primaryalerts@<yourdomain>.com.

 	 SMTP alerting Prism Element recipient email address

 	 Configure the Prism Element recipient email address to be secondaryalerts@<yourdomain>.com.

 	 NCC reports

 	 Configure daily NCC reports to run at 6:00 AM local time and send them by email to the primary alerting mailbox.

 	 Nutanix Pulse

 	 Configure Nutanix Pulse to monitor the Nutanix cluster and send telemetry data to Nutanix.

 [bookmark: Security_Compliance]Security and Compliance

 Nutanix recommends a defense-in-depth strategy for layering security throughout any enterprise datacenter solution. This design section focuses on validating the layers that Nutanix can directly oversee at the control and data-plane levels.

 Security Domains

 Isolate Nutanix cluster management and out-of-band interfaces from the rest of the network using firewalls, and only allow direct access to them from the management security domain. In addition, Nutanix recommends separating out-of-band management and cluster management interfaces onto a dedicated VLAN away from the application traffic.

 Syslog

 For each control plane endpoint (Prism Central), system-level internal logging goes to a centralized third-party syslog server that runs in the existing customer landscape. The system is configured to send logs for all available modules when they reach the syslog Error severity level.

 This design assumes that the centralized syslog servers are highly available and redundant, so you can inspect the log files in case the primary log system is unavailable.

 Certificates

 SSL endpoints serve all Nutanix control plane web pages. In the deployment and validation, self-signed certificates are utilized. The existing solution can replace the default self-signed certificates with certificates signed by an internal certificate authority from a Microsoft public key infrastructure (PKI). Any client endpoints that interact with the control plane should have the trusted certificate authority chain preloaded to prevent browser security errors.

 Note: Certificate management is an ongoing activity, and certificates need to be rotated periodically. This solution signs all certificates for one year of validity.

 [bookmark: Table12]Table 12. Security Design Decisions

 	 Design Option

 	 Validated Selection

 	 Data-at-rest encryption (DaRE)

 	 Don't use DaRE.

 	 SSL endpoints

 	 Sign control plane SSL endpoints with an internal trusted certificate authority (Microsoft PKI).

 	 Certificates

 	 Provision certificates with a yearly expiration date and rotate accordingly.

 	 Authentication

 	 Use Active Directory LDAPS authentication.

 	 Control plane endpoint administration

 	 Use a common administrative Active Directory group for all control plane endpoints.

 	 Cluster lockdown mode

 	 Don't enable cluster lockdown mode (allow password-driven SSH).

 	 Non-default hardening options

 	 Enable AIDE and hourly SCMA.

 	 System-level internal logging

 	 Enable error-level logging to an external syslog server for all available modules.

 	 Syslog delivery

 	 Use UDP transport for syslog delivery.

 [bookmark: Table13]Table 13. Security Configuration References

 	 Design Option

 	 Validated Selection

 	 Active Directory

 	 AD-admin-group:ntnx-ctrl-admins

 	 Syslog Server

 	 infra-az[1..2]-syslog:6514 (udp)

 [bookmark: Kubernetes_Cluster_Design]Kubernetes Cluster Design

 The following sections describe the designs for the Kubernetes on the Nutanix platform, using Nutanix Kubernetes Engine (NKE) features and integrating with essential Kubernetes tools and practices for efficient and secure operations.

 A single management cluster runs all components for application configuration, observability, and cross-workload cluster-persistent applications like Uptrace (an OpenTelemetry-based observability platform), Kafka, and Milvus (a cloud-native vector database that supports various data types).

 All production Kubernetes clusters are set up as production-level clusters using multiple primary and worker nodes distributed across different physical hosts to ensure high availability.

 Flux CD on the Kubernetes management cluster configures applications on the Kubernetes workload prod, test, and dev clusters, ensuring continuous and automated deployment that aligns with the configurations specified in the Git repositories. The workload clusters provide metrics, logs, and traces across all clusters to OpenTelemetry, and Uptrace, the front-end, user-friendly interface, visualizes and queries the collected data for thorough monitoring and debugging. The Retrieval-Augmented Generation workload on the Kubernetes workload production cluster sends data to and receives data from the vector store and Kafka on the Kubernetes management cluster.

 [bookmark: Fig16]Figure 16.
 GPT-in-a-Box Kubernetes Conceptual Design

 [image: A diagram of a workloadDescription automatically generated]

 Kube-VIP handles network connectivity for load balancing, Ingress controllers manage external access to services with HTTP and HTTPS routes, and Cert-Manager automates the management and issuance of TLS certificates, enhancing secure communications.

 Workload clusters have a dedicated node pool specifically for GPU resources. This node pool hosts pods that require GPU capabilities, such as nodes with machine learning or data processing workloads. Taints are used on GPU nodes to prevent non-GPU workloads from being scheduled on them. Corresponding tolerations need to be added to pods that require GPUs.

 [bookmark: Table14]Table 14. GPT-in-a-Box Cluster with NKE Scalability Design Decisions

 	 Design Option

 	 Validated Selection

 	 NKE cluster type

 	 Use a production cluster with an active-passive control plane.

 	 Control plane size

 	 Size the control plane with 8 CPU and 16 GB of memory.

 	 Initial cluster size

 	 Start with 3 worker nodes with 12 CPU, 16 GB of memory, and 300 GB of storage.

 	 GPU pool size

 	 Use 2 worker nodes with 12 CPU, 40 GB of memory, and 300 GB of storage.

 	 Monitoring

 	 Enable monitoring components.

 Note: NKE cluster names use a maximum of 22 characters.

 In this design, you can scale the worker nodes for the NKE management and workload clusters up or out to accommodate different workload sizes. Nutanix recommends scaling out. The total number of workers in the GPU node pools is constrained by the number of physically installed GPUs.

 Kubernetes Resilience

 NKE clusters are production-level clusters that provide a resilient control plane by running multiple nodes for the control plane and etcd. To ensure high availability, Kubernetes deployments use multiple replica pods and implement pod anti-affinity rules. This approach helps maintain service availability, even in the event of a worker node update or failure.

 Kubernetes services and ingress controllers perform the essential service of load balancing by evenly distributing network traffic across all available pods, enhancing service reliability and system performance.

 Kubernetes Networking

 Each deployed cluster uses a base configuration for networking:

 ● kube-vip: Load-balancing service

 ● nginx-ingress: Ingress service for L4 and L7 network traffic

 ● cert-manager: Service that creates valid SSL certificates for TLS application services

 ● Local DNS with self-signed certificate

 Kubernetes Monitoring

 Kubernetes and application-level monitoring is based on the core infrastructure monitoring concept. The observability stack uses OpenTelemetry to collect and move the following data between the Kubernetes clusters:

 ● Kubelet metrics

 ● Host metrics

 ● Kubernetes cluster metrics

 ● Kubernetes events

 ● Pod logs

 ● Prometheus metrics from service monitors

 ● Application-specific data from instrumentalization

 [bookmark: Fig17]Figure 17.
 Kubernetes Monitoring Conceptual Design

 [image: A diagram of a cluster of workload clusterDescription automatically generated]

 The Kubernetes management cluster uses the open-source project Uptrace to provide a front end for traces, metrics, and alerts. You can substitute Uptrace with its enterprise offering or use another front end that supports OpenTelemetry.

 The Kubernetes workload cluster has the Daemonset collector (receives all logs and metrics) and additional collectors for instrumentation and applications that send data to the deployment collector, which provides data enrichment and exports to the deployment collector on the management cluster. The management cluster deployment collector exports data to Uptrace or the chosen visualization front end and to the external syslog server, which Prism Central also uses.

 Kubernetes Backup

 The default storage class installed by NKE during deployment provides persistent storage for the management and workload clusters. The persistent volumes and application data in the management cluster are protected by a Velero backup schedule and stored in a single S3 bucket. Because application deployment is based on GitOps using FluxCD, you don't need to back up the applications.

 You can rebuild the Milvus vector database from data in the user buckets. If the data in the user buckets is ephemeral, you can use the Milvus Backup tool to back up and restore Milvus data.

 [bookmark: Large_Language_Model_Design]Large Language Model Design

 This reference design presents a robust architecture for running LLM applications around the Kubernetes-based Nutanix AI inference endpoint, using NKE as the orchestration platform. It provides a comprehensive, scalable, and efficient framework tailored for building RAG pipeline applications. This framework capitalizes on the latest LLM technologies and supporting tools, ensuring ease of development, deployment, and monitoring.

 Large Language Model Logical Design

 At the heart of this architecture is the inference endpoint, delivered through kserve. This element is vital for the deployment and management of machine learning models, especially for real-time inference needs. The integration with kserve and Nutanix ensures scalability, reliable accessibility, and consistent performance.

 The architecture is modular, allowing you to independently scale and update each component. It is compatible with the RAG framework, enabling the LLM to access information from the Milvus database, which enhances the generation process.

 Data ingestion is versatile, supporting both batch and event-based approaches through Kafka. This flexibility enables the system to manage both periodic large-scale batch uploads and continuous real-time data streaming. The system uses serverless functions built on Knative for processing events, which are triggered by Nutanix Objects event notifications through Kafka. This setup ensures efficient and scalable processing of incoming data streams.

 Once ingested, the data is vectorized (transformed by the embedding model into a vector representation) using Langchain and stored in Milvus. Nutanix Objects provides the scalable back-end storage required to accommodate the large-scale data demands of Milvus. The LLM models, hosted on kserve, access and use this vectorized data to enhance language generation capabilities.

 Solution uses OpenTelemetry to monitor the entire data flow for system observability. Additionally, Jupyter Lab offers a conducive environment for testing, experimentation, and development, with direct access to GPU resources for intensive computational tasks.

 Large Language Model Research Workflow

 The LLM uses the following research workflow:

 1. Ask a question: The interaction begins when the end user poses a question through the UI or chatbot interface.

 2. Create a query embedding: The embedding model transforms the user's query into a vector representation. This process is known as vectorization.

 3. Search and retrieve similar context: The vector database, which is specifically designed for similarity searches, stores the document embeddings generated by the model. It can efficiently search for and retrieve items based on these embeddings, which encapsulate the semantic meaning of the texts.

 4. Send the prompt: The workflow augments the user's query with relevant contextual information retrieved from the database, then sends this enriched query as a prompt to the LLM endpoint. The LLM processes the enriched query and generates a response.

 5. Get an answer: The UI or chatbot interface presents the LLM's response as the answer to the user's query.

 [bookmark: Fig18]Figure 18.
 LLM Research Workflow

 [image: A screenshot of a chatbotDescription automatically generated]

 Document Ingestion Workflow

 The design uses the following workflow for document ingestion:

 1. Uploading the document: Each time a new document is added to the bucket, an event notification is sent through Kafka.

 2. Processing the Kafka event: The notification triggers the document ingestion service to generate a new embedding for that specific document.

 3. Ingesting the batch: The document ingest function downloads the document.

 4. Embedding the document: Embedding involves splitting the document into smaller segments and using an embedding model to create a vector representation of each segment.

 5. Storing the embeddings: The generated vectors are stored in a vector database for future retrieval and searches.

 [bookmark: Fig19]Figure 19.
 Document Ingestion Workflow

 [image: A diagram of a software processDescription automatically generated]

 [bookmark: Backup_Disaster_Recovery]Backup and Disaster Recovery

 The scope of this solution is a single standalone GPT-in-a-Box cluster, and you must back up the application data on the S3 buckets in the Nutanix Objects store to an external environment. You don't need to back up the NKE configuration data because Flux CD handles the deployment and stores the configuration data in an external Git repository.

 You can use the streaming replication mechanism built into Nutanix Objects to replicate the data at the bucket level to a different S3 object store outside the GPT-in-a-Box cluster. You can also use the existing backup solution to back up the persistent application data and store it outside the GPT-in-a-Box cluster.

 Solution Deployment

 This chapter contains the following:

 ● Infrastructure Deployment

 ● Deploy GPT-in-a-Box using GitOps

 [bookmark: Infrastructure_Deployment]Infrastructure Deployment

 This section is a prerequisite for installing the GPT-in-a-Box solution and divided into the following key sections and procedures:

 1. Install AHV-based CCHC with Nutanix Cluster

 2. Install NVIDIA Grid Driver

 3. Install and Configure Nutanix Files

 4. Install and Configure Nutanix Objects

 5. Install and Configure Nutanix Kubernetes Clusters

 [bookmark: Install_AHV_based_CCHC_Nutanix_Cluster]Procedure 1. Install AHV-based CCHC with Nutanix Cluster

 This solution requires a minimum of four (4) node of CCHC with Nutanix Cluster. Each of the cluster node is enabled with 2x NVIDIA L40S GPUs with HCIAF240C M7 All-NVMe server. For detailed specifications on the specification of server nodes, go to section Solution Design.

 Note: A complete install process of AHV based CCHC with Nutanix cluster is outside the scope of this document. The key validation steps and references are detailed in this section.

 Step 1. Verify four (4) GPU enabled HCIAF240C M7 All-NVMe nodes are discovered in Cisco UCS Manager. For connectivity details please refer to Infrastructure and Network Design section.

 [image: A screenshot of a computerDescription automatically generated]

 Step 2. Ensure UCS Firmware is 4.3(4a) or above.

 [image: A screenshot of a computerDescription automatically generated]

 Step 3. Navigate to Equipment > Rack-mounts > Servers > Server(x). On the right navigation window, click Inventory > GPUs tab. Ensure a minimum of 1 x Nvidia L40S GPUs are displayed.

 [image: A screenshot of a computerDescription automatically generated]

 Step 4. Install Nutanix cluster with AOS 6.7.1., see the Field Guide to successfully install the cluster.

 [image: A screenshot of a computerDescription automatically generated][image: A screenshot of a computerDescription automatically generated]

 Note: The screenshot shown above displays three (3) nodes. To enable resiliency to failures, it is highly recommended to start with at least four (4) nodes.

 Step 5. Provision a Prism Central Instance deployed on Nutanix cluster and register the existing cluster to Prism Central. Customers have a choice to either deploy Prism Central on the GPT-in-a-Box cluster or utilize a pre-existing Prism Central Instance.

 [image: A screenshot of a computerDescription automatically generated]

 [bookmark: Install_NVIDIA_Grid_Driver]Procedure 2. Install NVIDIA Grid Driver

 The following steps details the process to deploy the NVIDIA driver on cluster nodes configured with L40S GPUs.

 Step 1. Download the GPU driver as per the AOS build installed on the cluster. This can be retrieved from Compatibility and Interoperability matrix on Nutanix portal. The existing cluster with AOS 6.7.1.5 is compatible with lcm_nvidia_20230302.2008_535.129.03.

 [image: A screenshot of a computerDescription automatically generated]30XXX

 Step 2. Ensure the Nvidia GPU is available as a pci device. Log into AHV (node Host IP) with root / nutanix/4u or password set by the administrator. Execute lspci | grep -I nvidia and ensure GPU is installed on the host.

 [image: A screen shot of a computerDescription automatically generated]

 Step 3. Log into Nutanix node CVM (Nutanix/Nutanix/4u) or with the password set by the administrator and copy the tar file to /home/Nutanix

 Step 4. Install the driver install_host_package -r lcm_nvidia_20230302.2008_535.129.03.tar.gz. This driver is installed across all nodes through the rolling restart process.

 [image: A screenshot of a computerDescription automatically generated]

Step 5. Run nvidia-smi and inspect the output for a table containing the driver version and detected GPU resources.

 [image: A screenshot of a computerDescription automatically generated]

 [bookmark: Install_Configure_Nutanix_Files]Procedure 3. Install and Configure Nutanix Files

 This procedure provides the high-level steps to enable and configure Nutanix Files from Prism Central. Nutanix Files runs on the same cluster as GPT-in-a-Box cluster. For Nutanix Files architecture details, go to Files on the Nutanix Portal.

 Step 1. Log into Prism Central and ensure Name Server and NTP Server are updated.

 Step 2. Go to Prism Central, select Admin Central, select LCM, and click Perform Inventory.

 [image: A screenshot of a computerDescription automatically generated]

 [image: A screenshot of a computerDescription automatically generated]

 Step 3. Select Marketplace and search for Files.

 [image: A screenshot of a computerDescription automatically generated]

 Step 4. From Files click Get. This will enable File Services.

 Step 5. Select Files and enable File Services.

 Step 6. From Files navigate to File Servers and select + New File Server.

 [image: A screenshot of a computerDescription automatically generated]

 Step 7. From the Create a File Server window, select the ‘GPT-in-a-Box’ cluster and check File Server 4.4.0.3 and click Proceed.

 [image: A screenshot of a computerDescription automatically generated]

 Step 8. Enter file server name, DNS domain, capacity (4TiB) , FSMV as 3 with 12vCPU and 64GB memory and click Next. These specifications are detailed in section Nutanix Files and Objects Design Decision.

 [image: A screenshot of a computerDescription automatically generated]

 Step 9. Enter the client network, subnet Mask, Gateway, and IPs for the client network.

 [image: A screenshot of a computerDescription automatically generated]

 Step 10. Select Storage Network, which is the same as the CVM network, and click Next.

 [image: A screenshot of a computerDescription automatically generated]

 Step 11. DNS Server and NTP server are pre-populated as per the settings on the cluster, click Next. Verify the summary and click Create.

 [image: A screenshot of a computerDescription automatically generated]

 Step 12. When File Server is created, create a NFS share ‘llm-repo’ with the default settings as shown below:

 [image: A screenshot of a computerDescription automatically generated]

 [bookmark: Install_Configure_Nutanix_Objects]Procedure 4. Install and Configure Nutanix Objects

 This procedure provides the high-level steps to enable and configure Nutanix Objects from Prism Central. Nutanix Files runs on the same cluster as GPT-in-a-Box cluster. For Nutanix Files architecture details go to the Nutanix Objects User Guide on Nutanix Portal.

 You can also view the Nutanix object store creation video on Nutanix University.

 Step 1. Log into Prism Central and ensure Name Server and NTP Server are updated.

 Step 2. Prior to creating objects store, create IP Address Management (IPAM) network

 Step 3. From Prism Central, navigate to Infrastructure, select Network & Security > Subnet.

 [image: A screenshot of a computerDescription automatically generated]

 Step 4. Enter Name, Type=VLAN, select GPT-in-a-Box cluster, select the virtual switch and VLAN ID = 0 , enable IP Address Management and give a range of available Ips. Click Create.

 [image: A screenshot of a computerDescription automatically generated]

 Note: IPAM would be utilized in subsequent section. As IP range cannot be edited, It is recommended to have several small range of IPs rather than a single large IP range.

 Step 5. Select Marketplace and search for Objects.

 Step 6. Navigate to Objects and enable object services.

 Step 7. Select Object Stores and click Create Object Store.

 [image: A screenshot of a computerDescription automatically generated]

 Step 8. Click Continue on the prerequisite window. From the create Object store window, enter the name of object store, select GPT-in-a-Box cluster, and edit work node size to 3. Click Next.

 [image: A screenshot of a computerDescription automatically generated]

 Step 9. Select the Storage Network. For this solution, the CVM network is used. Click Next.

 [image: A screenshot of a computerDescription automatically generated]

 Note: The IPs in the storage network should be outside the scope of IPAM DHCP configuration.

 Note: In this deployment, the storage network and the client network are on the same VLAN, therefore there is a single IPAM DHCP configuration.

 Step 10. Select Client Network and enter the available IPs for the client network.

 [image: A screenshot of a computerDescription automatically generated]

 Note: The IPs in the client network should be outside the scope of IPAM DHCP configuration.

 Note: In this deployment, the storage network and the client network are on the same VLAN, therefore there is a single IPAM DHCP configuration.

 Step 11. Click Save & Continue. Allow the validation to pass, and then click Create Object Store.

 [image: A screen shot of a diagramDescription automatically generated]

 Step 12. Secure the Access Key and Secret Key which is required in the solution.

 [image: A screenshot of a computerDescription automatically generated]

 Step 13. Navigate to the created object store and click Create Bucket.

 Step 14. Create two buckets ‘milvus’ and ‘documents.’ The milvus bucket is used for the milvus vector db to store the embedding and the documents bucket will store the documents and a knowledge base uploaded through the RAG reference application.

 [image: A screenshot of a computerDescription automatically generated]

 Step 15. Select the documents bucket and add Full permission to the user configured during object store creation. Similarly do the same for the milvus bucket.

 [image: A screenshot of a computerDescription automatically generated]

 [bookmark: Install_Configure_Nutanix_Kubernetes]Procedure 5. Install and Configure Nutanix Kubernetes Clusters

 This procedure provides the high-level steps to install Kubernetes clusters through Nutanix Kubernetes Engine (NKE). GPT-in-a-Box reference design requires two clusters:

 Nutanix management cluster: A single management cluster runs all components for application configuration, observability, and cross-workload cluster-persistent applications like Uptrace (an OpenTelemetry-based observability platform), Kafka, and Milvus (a cloud-native vector database that supports various data types).

 Nutanix workload cluster: Workload clusters have a dedicated node pool specifically for GPU resources. This node pool hosts pods that require GPU capabilities, such as nodes with machine learning or data processing workload

 Note: Prior to configuring management and workload cluster, ensure set of 2x 10 IP Pools are configured in the IPAM (IP Address Management with DHCP)

 Step 1. Log into Prism Central and search for NKE in marketplace.

 Step 2. Enable NKE 2.9. Select Kubernetes Management. Click Download OS Image.

 [image: A screenshot of a computerDescription automatically generated]

 Note: In the event NKE fails to enable through marketplace, log into Prism Central and restart the cluster (genesis restart).

 Step 3. Select and download ‘ntnx-1.6.1’ for the host OS image for Kubernetes cluster.

 [image: A screenshot of a computerDescription automatically generated]

 Step 4. When the image is downloaded, select the cluster from left navigation bar and click Create Kubernetes Cluster.

 [image: A screenshot of a computerDescription automatically generated]

 Step 5. Select production cluster and click Next.

 [image: A screenshot of a computerDescription automatically generated]

 Step 6. Name the cluster as per the deployment nomenclature; in this solution the clusters are name ‘mtnx-k8-mgmt’ and ‘ntnx-k8-workload’. Click Next.

 [image: A screenshot of a computerDescription automatically generated]

 Step 7. On the next screen, select Kubernetes node network for the IPM (IPAM network), enter an available control plane VIP and edit the worker resource to 12 vCPU, 16 GB memory and 300GB storage size and control plane resources to 8 vCPU and 16GB memory. Click Next.

 [image: A screenshot of a computerDescription automatically generated]

 Step 8. From Network, select the defaults.

 [image: A screenshot of a computerDescription automatically generated]

 Step 9. From Storage Class, select the defaults and ensure the Nutanix Cluster is selected as the GPT-in-a-Box cluster. Click Create.

 [image: A screenshot of a computerDescription automatically generated]

 Step 10. Monitor the progress of ntnx-k8-mgmt cluster.

 [image: A screenshot of a videoDescription automatically generated]

 Step 11. Install the workload cluster by repeating steps 1 – 10.

 Step 12. Create a product Kubernetes cluster and name it ntnx-k8-workload.

 [image: A screenshot of a computerDescription automatically generated]

 Step 13. Similar to the management cluster, select the network IPM, enter an available control plane VIP, edit the resources of workload cluster, worker resource to 12 vCPU, 16 GB memory and 300GB storage size and control plane resources to 8 vCPU and 16GB memory. Click Next.

 [image: A screenshot of a computerDescription automatically generated]

 Step 14. Select the defaults in the Network and Storage class screen. Click Create.

 Step 15. Monitor the progress of both ntnx-k8-mgmt and ntnx-k8-workload Kubernetes clusters.

 [image: A screenshot of a computerDescription automatically generated]

 All the nodes in the Kubernetes cluster are created as VMs on the GPT-in-a-Box Nutanix cluster as shown below:

 [image: A screenshot of a computerDescription automatically generated]

 Step 16. Ensure both the Kubernetes clusters are created successfully and the health status is healthy.

 [image: A screenshot of a computerDescription automatically generated]

 Step 17. In the next few steps the gpu node pool is added to the Kubernetes workload cluster (ntnx-k8-workload). Click the ntnx-k8-workload cluster.

 [image: A screenshot of a computerDescription automatically generated]

 Step 18. Click Node Pools > Worker to add GPU worker nodes.

 [image: A screenshot of a computerDescription automatically generated]

 Step 19. On the worker node pool, click Add Node Pool, name the node pool (gpu-pool), select number of nodes (equal to the number of GPUs across cluster), vCPU=12, Memory=40GB, Storage=300GB, Node Pool Network – IPM (IPAM address created in the previous section), and select GPU=Passthrough.

 Note: In the existing configuration, there are 2 GPUs on only one of the node in 3 node CCHC with Nutanix Cluster.

 [image: A screenshot of a computerDescription automatically generated]

 Step 20. Click Configure GPU and configure the 1GPU per node. Click Save.

 [image: A screenshot of a computerDescription automatically generated]

 Step 21. Click Add.

 [image: A screenshot of a computerDescription automatically generated]

 Step 22. Monitor the progress until completion of the GPU node pool addition to the Kubernetes workload cluster.

 [image: A screenshot of a computerDescription automatically generated]

 [bookmark: Deploy_GPT_In_a_Box_using_GitOps]Deploy GPT-in-a-Box using GitOps

 This section focusses on configuring GPT-in-a-Box along with the reference application.

 Repository Structure

 To deploy applications on top of GPT-In-Box reference architecture, the repository at https://github.com/ucs-compute-solutions/nai-llm-fleet-infra can be leveraged as the starting point.

 The repository is designed to provide reference architecture for GPT-In-Box. It has a catalogue of multiple components and give flexibility to deploy user applications on top and enables user to easily assemble custom profile for their application. It also has a working example for a sample application.

 apps

 apps directory has two sub-directories under it, nai-helm and gptnvd-reference-app.

 The way application is broken up is that nai-helm is what deploys the actual LLM endpoint and gptnvd-reference-app is what deploys the reference application. (Chatbot and the document ingester).

 gptnvd-reference-app is the application built by development teams. nai-helm is what is fine-tuned and served by the AI Operations team.

 clusters/_profiles

 Profile defines what gets installed. There are multiple profiles available at clusters/_profiles.

 _base

 The base for all cluster profiles (things installed in all variants).

 [image: A white background with black textDescription automatically generated]

 llm-management

 Defines the Management cluster profile. It defines management specific applications and platform variants.

 [image: A screenshot of a computerDescription automatically generated]

 llm-workloads

 Defines the Workloads cluster profile. It defines workload specific applications and platform variants.

 [image: A screenshot of a computerDescription automatically generated]

 Custom profiles can be created based on the application need.

 .taskfiles

 Development environment has Go Task binary integrated. Task binary is a task runner / build tool which is simpler and easier to use than GNU Make.

 taskfile.yaml has the logic to include different categories of tasks defines in the .taskfiles directory.

 Many different helper tasks are defined in .taskfiles like flux bootstrapping, NKE cluster management, troubleshooting and so on.

 Additional tasks can be created based on application and platform needs.

 More information on tasks can be found here: https://taskfile.dev/

 configs

 configs is the directory for environment configuration used by local scripts.

 configs/_common/.env has the global environment configuration.

 scripts

 Scripts directory consists of all the local scripts.

 platform

 Contains catalogue of all the platform services.

 Customizing Environment Profiles

 This document provides generic design blueprint that customers can use as a starting point to deploy in their environment. Solution gives flexibility to easily introduce the necessary changes to the profiles of both management and workload clusters based on the requirement and use case.

 The repository includes directory clusters/_profiles. The profiles have the definitions for what gets installed in the cluster.

 This reference design includes two environment profiles prod and non-prod for management and workload clusters. _base is the base for all the cluster profiles.

 non-prod has definitions for environments like Development, QA, Staging and so on, and prod has definition for production deployment.

 This generic definition can be customized for specific environment and use case by introducing the necessary changes to fit into your environment. You can also have totally new custom environments configured based on the requirement.

 A few example customizations are provided below:

 Example-1

 [image: A screenshot of a computerDescription automatically generated]

 In Example-1, you can see JupyterHub is enabled in the "non-prod" environment type because Jupyter will be used mostly during development. Based on the requirement it can also be configured to be available in the “prod” profile by simply copying jupyterhub-repo.yaml and jupyterhub-addons.yaml and update prod/kustomization.yaml to include Jupyter addon. and JupyterHub repository.

 [image: A screenshot of a computer programDescription automatically generated]

 Example-2

 In Example-2, you can see that the main difference between prod and non-prod in this reference design is that prod environment is using Let's Encrypt and Amazon Route 53. If you want to integrate this with your private DNS and Certificate management, disable this component and add your customized component.

 [image: A screenshot of a computerDescription automatically generated]

 Example -3

 In the non-prod, while configuring he GPU Operator time slicing can be enabled so that multiple applications share the GPU. Since it is not recommended for production, it is not included in the prod environment profile.

 [image: A screenshot of a computerDescription automatically generated]

 Based on the requirement, time slicing, and number of slices can be enabled in your environment profile.

 Fork the Repository

 You will need to fork from original repository. A fork is a new repository that shares code and visibility settings with the original “upstream” repository. This will be customized for specific environments in the development machine.

 Fork the nai-llm-fleet-infra repository on GitHub, here: https://github.com/ucs-compute-solutions/nai-llm-fleet-infra

 Procedure 1. Fork the repository

 Step 1. On GitHub.com, navigate to the ucs-compute-solutions/nai-llm-fleet-infra repository

 Step 2. In the top-right corner of the page, click Fork.

 [image: A screenshot of a computerDescription automatically generated]

 Step 3. Under Owner, from the drop-down list, select an owner for the forked repository.

 Step 4. By default, forks are named the same as their upstream repositories. Optionally, to further distinguish your fork, in the "Repository name" field, type a name.

 Step 5. Optionally, in the Description field, type a description of your fork.

 Step 6. Click Create Fork.

 Clone the Forked Repository

 Now you have a fork of the repository, but you do not have the files in that repository locally on your Development machine.

 Procedure 1. Clone the forked repository

 This procedure provides how to clone the repository so that relevant changes are done and pushed back to GitHub.

 Step 1. On the development machine (Red Hat Enterprise Linux 8 host preferred), make sure git is installed.

 Step 2. Set up Git and authentication with GitHub.com from Git. gh is GitHub on the command line. Use gh to authenticate with GutHub. Run the following command and follow the steps:

 gh auth login

 For more information, go to: https://docs.github.com/en/get-started/getting-started-with-git/set-up-git

 Step 3. From GitHub.com, navigate to your fork of the repository.

 Step 4. Click <> Code.

 Step 5. Copy the link.

 Step 6. Change the current working directory to the location where you want the cloned directory.

 Step 7. Type git clone, and then paste the URL to clone the forked copy of this repository.

 git clone git@github.com:your-username/ nai-llm-fleet-infra.git

 Step 8. Change the directory to cloned repository.

 cd nai-llm-fleet-infra

 Set up Development Environment

 To deploy, manage and troubleshoot GPT-In-Box along with application, we need multiple tools and libraries. It is tedious to manually install each of these tools and install specific set of libraries in the development host. Also based on the applications deployed, there might be additional binaries required.

 Hence, a development environment with all the required tools for deploy, manage, and troubleshoot are required to start with. We leverage Devbox for this.

 Devbox is a command-line tool that enables to easily create isolated shells for development. (Similar to venv for Python). You start by defining the list of packages required by your development environment, and devbox uses that definition to create an isolated environment for your application needs with specific tools.

 Devbox is internally powered by nix which is a tool that takes a unique approach to package management and system configuration. You can use Devbox without needing to learn the Nix Language.

 All the packages you need are nix packages that run like a sub-system. Devbox works similar to a package manager like yarn – except the packages it manages are at the operating-system level. With Devbox, you can install package versions from the Nix Package Registry available here: https://www.nixhub.io/

 Procedure 1. Set up the development environment

 Step 1. Run the following install script as a non-root user to install the latest version of Devbox. Accept all the defaults:

 curl -fsSL https://get.jetify.com/devbox | bash

 [image: A screenshot of a computer programDescription automatically generated]

 Step 2. Start the devbox shell with access to your packages:

 devbox shell

 [image: A computer screen shot of a computer programDescription automatically generated]

 Step 3. When it is run for the first time, nix will not be available. You will be prompted to install. It will also install and configures all the tools/packages listed in the devbox.json file.

 Step 4. For any additional packages for your environment, update the devbox.json before starting the devbox shell.

 Deploy the Application

 So far two Kubernetes clusters have been deployed per the solution design requirements:

 ● Management Cluster: It will host the management workloads like flux, kafka, and so on.

 ● Workload Cluster: It hosts the dev LLM and ChatBot application - this will use GPU passed through to the kubernetes worker nodes.

 Procedure 1. Create Custom Environment Files for the Management Cluster

 Framework is keyed to the name of the cluster. Hence the initial configurations will be done separately for the Management cluster and the NKE Workload clusters. It is advisable to keep separate shell terminal sessions for the Management and each of the Workload cluster.

 Step 1. In the shell terminal, set K8S_CLUSTER_NAME environment variable with the name of the NKE Management Cluster:

 export K8S_CLUSTER_NAME=ntnx-k8-mgmt

 Step 2. copy ./.env.sample.yaml to ./.env.${K8S_CLUSTER_NAME}.yaml:

 cp ./.env.sample.yaml ./.env.${K8S_CLUSTER_NAME}.yaml

 Procedure 2. Customize the Environment File for the Management Cluster

 This section explains how to customize the environment file for Management Cluster (in this example, it is .env.ntnx-k8-mgmt.yaml).

 Step 1. Provide the cluster name:

 ## kubernetes cluster name

 name: ntnx-k8-mgmt

 Step 2. Set the profile name. Set this parameter with the directory name of the appropriate profile. For management it is, llm-management.

 ## cluster_profile_type - anything under clusters/_profiles (e.g., llm-management, llm-workloads, etc.)

 profile: llm-management

 Step 3. Define the environment type. Within a profile, there are multiple environment types. Specify the appropriate environment type. Under ll-management, there are pod and non-prod.

 ## environment name - based on profile selected under clusters/_profiles/<profile>/<environment> (e.g., prod, non-prod, etc.)

 environment: prod

 Step 4. Provide the docker hub registry access details:

 ## docker hub registry config

 registry:

 docker_hub:

 user: <<user_name>>

 password: <<access token>>

 Step 5. The framework components and applications are deployed via GITOPS. So it requires GIT Hub access to synchronize. Provide the GIT Hub access details to access the created fork and push the changes:

 flux:

 ## flux specific configs for github repo

 github:

 repo_url: <<repo url>>

 repo_user: <<user name>>

 repo_api_token: <<API Token>>

 Step 6. Provide the Nutanix configurations like Nutanix Prism Creds and Nutanix Objects Store Configs:

 infra:

 ## Global nutanix configs

 nutanix:

 ## Nutanix Prism Creds, required to download NKE creds

 prism_central:

 enabled: true

 endpoint: <<Endpoint IP>>

 user: <<Configured User>>

 password: <<Password>>

 ## Nutanix Objects Store Configs

 objects:

 enabled: true

 host: <<Host_IP>>

 port: 80

 region: us-east-1

 use_ssl: false

 access_key: <<Access_Key>>

 secret_key: <<Secret_Key>>

 Step 7. GPT in-a-Box leverages a RAG Pipeline with Serverless Functions. You need to Vector database to store all the vector embeddings of the documents. In this example, Milvus is configured as vector store.

 Step 8. Provide the bucket name which is created to store the embeddings:

 ## Milvus is vector database

 milvus:

 enabled: true

 version: 4.1.13

 milvus_bucket_name: milvus

 Step 9. Next step is to configure the services. kube-vip is explicitly used for service that require Load Balancer IP addresses such as nginx and istio. nginx is explicitly used for anything that leverages Kubernetes Ingress objects such as most front-end portals/consoles and grpc backends like kafka, opentelemetry, and so on. A minimum of 2 ips should be provide in a range.

 kube_vip:

 enabled: true

 ## Used to configure default global IPAM pool. A minimum of 2 ips should be provide in a range

 ## For Example: ipam_range: 172.20.0.22-172.20.0.23

 ipam_range: 10.108.1.214-10.108.1.216

 Step 10. Provide the virtual IP for nginx_ingress:

 ## required for all platform services that are leveraging nginx-ingress

 nginx_ingress:

 enabled: true

 version: 4.8.3

 ## Virtual IP Address (VIP) dedicated for nginx-ingress controller.

 ## This will be used to configure kube-vip IPAM pool to provide Services of Type: LoadBalancer

 ## Example: vip: 172.20.0.20

 vip: 10.108.1.213

 Step 11. NGINX Wildcard Ingress Subdomain used for all default ingress objects created within cluster. Create a subdomain with preferable cluster name. In the sub-domain, create a host record with *. Provide the value for wildcard_ingress_subdomain.

 For example, If DNS is equal to *.ntnx-k8-mgmt.rtp4.local, then value is ntnx-k8-mgmt.rtp4.local.

 wildcard_ingress_subdomain: ntnx-k8-mgmt.rtp4.local

 management_cluster_ingress_subdomain maps to Wildcard Ingress Subdomain for management cluster.

 management_cluster_ingress_subdomain: ntnx-k8-mgmt.rtp4.local

 The remainder of the components will be disabled since they are required for Workload clusters.

 Procedure 3. Generate and Validate the Configuration

 Step 1. Install required workstation packages using the Taskfile Workstation command.

 task workstation:install-packages

 Step 2. Export the krew command path to the PATH:

 export PATH="${KREW_ROOT:-$HOME/.krew}/bin:$PATH"

 Step 3. Run the Taskfile BootStrap Command to validate and generate the cluster configuration:

 task bootstrap:generate_cluster_configs

 When we run this task, it:

 ● Stages .local/<K8S_CLUSTER_NAME>/.env from .env.<K8S_CLUSTER_NAME>.yaml file on primary project directory

 ● Stages clusters/<K8S_CLUSTER_NAME>/**.yaml configs from tmpl/cluster/*.tmpl templates

 Step 4. Verify the generated cluster configs:

 cat .local/${K8S_CLUSTER_NAME}/.env

 cat clusters/${K8S_CLUSTER_NAME}/platform/cluster-configs.yaml

 Procedure 4. Push the changes to gitHub

 Step 1. Run the following git Operations to push the changes:

 git add

 git commit

 git push

 Procedure 5. Select the Cluster

 Step 1. Run the following command to connect to the NKE cluster:

 eval $(task nke:switch-shell-env) && \

 task nke:download-creds

 Step 2. The first task will prompt for existing cluster instance in local shell:

 [image: A white text on a white backgroundDescription automatically generated]

 Step 3. This task will download the NKE kubeconfig for selected cluster:

 [image: A close up of a computer screenDescription automatically generated]

 Nutanix Objects Bucket Configurations for Milvus

 Buckets are logical containers which Milvus leverages to store the Vector Embeddings. We need to make sure that the bucket has appropriate permissions are set for user access. Also, Object Store must be enabled with Kafka notification endpoint.

 Procedure 1. Configure the Nutanix Objects Bucket for Milvus

 Step 1. Log into the Prism Central web console.

 Step 2. In the Application Switcher, click Objects.

 [image: A screenshot of a computerDescription automatically generated]

 Step 3. In the Object Stores table, click the name of the object store where buckets are created for storing documents and Milvus.

 [image: A screenshot of a computerDescription automatically generated]

 Step 4. Click Settings and select Notification Endpoints.

 [image: A screenshot of a computerDescription automatically generated]

 Step 5. Select Kafka. Enable the Notification. For Object Store Events, select None.

 Note: Kafka is at management cluster. So for the Host name we entered kafka. and the Wildcard Ingress Subdomain for management cluster.

 Note: For port 9096 was provided. This is the GRPC port that we expose from ingress perspective.

 Note: In our example, we provided the management cluster as a sub domain and the Kafka endpoint is - kafka.ntnx-k8-mgmt.rtp4.local:9096.

 [image: A screenshot of a computerDescription automatically generated]

 Step 6. Click Save.

 Step 7. In the Object Stores table, click the name of the object store and click the bucket configured for Milvus.

 [image: A screenshot of a computerDescription automatically generated]

 Step 8. Navigate to User Access and make sure Full Access is configured for the user.

 [image: A screenshot of a computerDescription automatically generated]

 Step 9. Repeat this for the bucket that is created for storing the documents ingested as part of RAG Pipeline.

 Step 10. Navigate to the bucket that is created to store the documents.

 [image: A screenshot of a computerDescription automatically generated]

 Step 11. Click Create Rule.

 Step 12. In the Endpoint, select Kafka. For Scope select All Objects and click All Events for Data Events.

 [image: A screenshot of a computerDescription automatically generated]94xxxx

 This will send a notification event to document the ingestion serverless function that is running inside knative and that will trigger Milvus for vectorization.

 [image: A screenshot of a computerDescription automatically generated]

 Procedure 2. Bootstrapping Management Cluster

 After making sure cluster configuration if fine, bootstrap the Flux.

 Step 1. Run the following command to bootstrap Flux:

 task bootstrap:silent

 Note: If there are any issues, troubleshot using task:flux-collect. You can re-run the task bootstrap:silent as many times needed.

 Step 2. Monitor the status of the installation in a new terminal by running the following commands:

 cd nai-llm-fleet-infra

 devbox shell

 eval $(task nke:switch-shell-env) (Choose NKE Management Cluster)

 task flux:watch

 Step 3. Make sure all helm charts and Kustomization resources are READY:

 [image: A close-up of a documentDescription automatically generated]

 Step 4. If there are any issues, update local the git repository, push up changes and run the following:

 task flux:reconcile

 Procedure 3. Create Custom Environment Files for the Workload Clusters

 Step 1. Open a new terminal. Change the directory to cloned repository:

 cd nai-llm-fleet-infra

 Step 2. Start the devbox shell:

 devbox shell

 Step 3. In the shell terminal, set K8S_CLUSTER_NAME environment variable with the name of the NKE Workload Cluster:

 export K8S_CLUSTER_NAME=ntnx-k8-workload

 Step 4. Copy ./<Environment_file_of_NKE_Management_Cluster.yaml to ./.env.${K8S_CLUSTER_NAME}.yaml

 cp ./.env.ntnx-k8-mgmt.yaml ./.env.${K8S_CLUSTER_NAME}.yaml

 Step 5. Repeat steps 1 – 4 for all NKE Workload clusters in a separate shell terminal.

 Procedure 4. Customize the Environment File for Workload Clusters

 Step 1. Change the cluster name:

 ## kubernetes cluster name

 name: ntnx-k8-workload

 Step 2. Set the profile name. Profile defines what gets installed. There are multiple profiles available at clusters/_profiles.

 _base is the base for all cluster profiles (Things installed in all variants)

 llm-management has definition for Management cluster profile (defines management specific applications and platform variants).

 llm-workloads has definition Workloads cluster profile (defines workload specific applications and platform variants)

 Step 3. Set this parameter with the directory name of the appropriate profile. For workload it is, llm-workloads.

 ## cluster_profile_type - anything under clusters/_profiles (e.g., llm-management, llm-workloads, etc.)

 profile: llm-workloads

 Step 4. Define the environment type. Within a profile, there are multiple environment types. Specify the appropriate environment type. Under llm-workloads, there are pod and non-prod.

 ## environment name - based on profile selected under clusters/_profiles/<profile>/<environment> (e.g., prod, non-prod, etc.)

 environment: non-prod

 Step 5. Provide the docker hub registry access details:

 ## docker hub registry config

 registry:

 docker_hub:

 user: <<user_name>>

 password: <<access token>>

 Step 6. GPUs are required only in the Workload cluster. Hence enable the GPU Operator. Enable time slicing only for non-production environments.

 ## nvidia gpu specific configs

 gpu_operator:

 enabled: true

 version: v23.9.0

 cuda_toolkit_version: v1.14.3-centos7

 ## time slicing typically only configured on dev scenarios.

 ## ideal for jupyter notebooks

 time_slicing:

 enabled: false

 replica_count: 4

 Step 7. The framework components and applications are deployed via GITOPS. This requires GIT Hub access to synchronize. Provide the GIT Hub access details to access the created fork and push the changes:

 flux:

 ## flux specific configs for github repo

 github:

 repo_url: <<repo url>>

 repo_user: <<user name>>

 repo_api_token: <<API Token>>

 Step 8. Provide the Nutanix configurations like Nutanix Prism Creds and Nutanix Objects Store Configs:

 infra:

 ## Global nutanix configs

 nutanix:

 ## Nutanix Prism Creds, required to download NKE creds

 prism_central:

 enabled: true

 endpoint: <<Endpoint IP>>

 user: <<Configured User>>

 password: <<Password>>

 ## Nutanix Objects Store Configs

 objects:

 enabled: true

 host: <<Host_IP>>

 port: 80

 region: us-east-1

 use_ssl: false

 access_key: <<Access_Key>>

 secret_key: <<Secret_Key>>

 Step 9. GPT in a Box leverages a RAG Pipeline with Serverless Functions. We need to Vector database to store all the vector embeddings of the documents. In this example, Milvus is configured as vector store.

 Step 10. Provide the bucket name that is created to store the embeddings:

 ## Milvus is vector database

 milvus:

 enabled: true

 version: 4.1.13

 milvus_bucket_name: milvus

 Step 11. Configure the services.

 kube-vip is explicitly used for service that require Load Balancer IP addresses such as nginx and istio. nginx is explicitly used for anything that leverages Kubernetes Ingress objects such as most front-end portals/consoles and grpc backends like kafka, opentelemetry, and so on. A minimum of 2 IPs should be provided in a range.

 Since this is a new cluster, you need to provide a different set of IP addresses:

 services:

 ###

 ## Required variables for kube-vip and depedent services

 ## kube-vip specific configs required for any services needing to be configured with LoadBalancer Virtual IP Addresses

 kube_vip:

 enabled: true

 ## Used to configure default global IPAM pool. A minimum of 2 ips should be provide in a range

 ## For Example: ipam_range: 172.20.0.22-172.20.0.23

 ipam_range: 10.108.1.219-10.108.1.220

 Step 12. Provide the virtual IP for nginx_ingress:

 ## required for all platform services that are leveraging nginx-ingress

 nginx_ingress:

 enabled: true

 version: 4.8.3

 ## Virtual IP Address (VIP) dedicated for nginx-ingress controller.

 ## This will be used to configure kube-vip IPAM pool to provide Services of Type: LoadBalancer

 ## Example: vip: 172.20.0.20

 vip: 10.108.1.217

 Step 13. The NGINX Wildcard Ingress Subdomain is used for all default ingress objects created within The cluster. Create a subdomain and provide a cluster name. In the sub-domain, create a host record containing *. Provide the value for wildcard_ingress_subdomain.

 For example, If DNS is equal to *.ntnx-k8-workload.rtp4.local, then value is ntnx-k8-mgmt.rtp4.local

 wildcard_ingress_subdomain: ntnx-k8-workload.rtp4.local

 Step 14. The management_cluster_ingress_subdomain maps to the Wildcard Ingress Subdomain for management cluster.

 management_cluster_ingress_subdomain: ntnx-k8-mgmt.rtp4.local

 Step 15. Provide the Virtual IP Address (VIP) dedicated for istio ingress gateway. Istio is exclusive to knative-serving which is used by LLM inferencing endpoint.

 Step 16. Change the Istio Ingress Gateway - Wildcard Subdomain to the value of the Workload NGINX Wildcard Ingress Subdomain:

 istio:

 enabled: true

 version: 1.17.2

 ## Virtual IP Address (VIP) dedicated for istio ingress gateway.

 ## This will be used to configure kube-vip IPAM pool to provide Services of Type: LoadBalancer

 ## This address should be mapped to wildcard_ingress_subdomain defined below. For Example: vip: 172.20.0.21

 vip: 10.108.1.218

 ## Istio Ingress Gateway - Wildcard Subdomain used for all knative/kserve llm inference endpoints.

 ## EXISTING A Host DNS Records are pre-requisites. Example: If DNS is equal to *.llm.example.com, then value is llm.example.com

 ## If leveraging AWS Route 53 DNS with Let's Encrypt (below), make sure to enable/configure AWS credentials needed to

 ## support CertificateSigningRequests using ACME DNS Challenges.

 ## For DEMO purposes, you can leverage the NIP.IO with the nginx_ingress vip and self-signed certificates.

 ## For Example: llm.flux-kind-local.172.20.0.21.nip.io

 wildcard_ingress_subdomain: ntnx-k8-workload.rtp4.local

 Step 17. Enable kserve, knative_serving and knative_istio:

 kserve:

 enabled: true

 version: v0.11.2

 knative_serving:

 enabled: true

 version: knative-v1.10.1

 knative_istio:

 enabled: true

 version: knative-v1.10.0

 Step 18. Knative Eventing is used to receive Event notifications from Nutanix Objects Document Bucket:

 knative_eventing:

 enabled: true

 version: knative-v1.10.1

 Step 19. The way application is broken up is that nai-helm is what deploys the actual LLM endpoint and gptnvd_reference_app is what deploy the chatbot and the document ingester.

 Step 20. To install the reference application, set gptnvd_reference_app.enabled and specify the bucket created for documents in gptnvd_reference_app.documents_bucket_name:

 apps:

 ## Required GPT NVD Reference Application Helm Chart Configs

 gptnvd_reference_app:

 enabled: true

 version: 0.2.7

 documents_bucket_name: documents

 Step 21. Configure the LLM endpoint in nai_helm section:

 ## Required NAI LLM Helm Chart Configs

 nai_helm:

 enabled: true

 version: 0.1.1

 model: llama2_7b_chat

 revision: 94b07a6e30c3292b8265ed32ffdeccfdadf434a8

 maxTokens: 4000

 repPenalty: 1.2

 temperature: 0.2

 topP: 0.9

 useExistingNFS: false

 nfs_export: /llm-repo

 nfs_server: 10.108.1.141

 huggingFaceToken: <<Hugging Face User Access Token>>

 Model Store Options

 The large language model we use must be in the Model Archive file format which will be used by TorchServe to load the model. We have two options to provide the Model Archive file to LLM.

 One, provide the HuggingFace token. While pod initialization happens, initi containers will download the model directly from HuggingFace and coverts to Model Archive file.

 Another option is to generate the Model Archive file and keep the configured NFS.

 In the example, LLM is downloaded from HuggingFace.

 If you are leveraging NFS with Nutanix files to store the model, then set useExistingNFS to true and disable huggingFaceToken.

 For more information about Generating Model Archive File, go to: https://opendocs.nutanix.com/gpt-in-a-box/kubernetes/v0.2/generating_mar/

 In some cases, you may want to use a custom model, for example a custom fine-tuned model. The design provides the capability to generate a MAR file with custom models and start an inference server.

 More information is available here: https://opendocs.nutanix.com/gpt-in-a-box/kubernetes/v0.2/custom_model/

 Generate and Validate the Configuration

 The next step is to validate and generate the cluster configuration for Workload clusters.

 Procedure 1. Validate and generate the cluster configuration

 Step 1. Run the following command:

 task bootstrap:generate_cluster_configs

 Step 2. Verify the generated cluster configs:

 cat .local/${K8S_CLUSTER_NAME}/.env

 cat clusters/${K8S_CLUSTER_NAME}/platform/cluster-configs.yaml

 Procedure 2. Push the changes to gitHub

 Step 1. Run the following git Operations to push the changes:

 git add .

 git commit

 git push

 Procedure 3. Select the cluster

 Step 1. The following command can be used connect to the NKE cluster:

 eval $(task nke:switch-shell-env) && \

 task nke:download-creds

 Step 2. The first task will prompt for the existing cluster instance in local shell:

 [image: A computer screen shot of a computer codeDescription automatically generated]

 Step 3. The next task will download the NKE kubeconfig for selected cluster:

 [image: A screenshot of a computer programDescription automatically generated]

 Bootstrap the Workload NKE Clusters

 After making sure cluster configuration if fine, you can bootstrap Flux.

 Procedure 1. Bootstrap Flux

 Step 1. Run the following command to bootstrap Flux:

 task bootstrap:silent

 Step 2. If there are any issues, troubleshot using task:flux-collect. You can re-run task bootstrap:silent as many times needed.

 Step 3. Monitor the status of the installation in a new terminal running the following commands:

 cd nai-llm-fleet-infra

 devbox shell

 eval $(task nke:switch-shell-env) (Choose NKE Workload Cluster)

 task flux:watch

 Step 4. Make sure all helm charts and Kustomization resources are in READY state:

 [image: A close-up of a documentDescription automatically generated]

 Step 5. Wait for 15-20 minutes for the large language model loading to complete.

 Step 6. If there are any issues, update the local git repository, push the changes to GitHub and run the following command:

 task flux:reconcile

 Solution Validation

 This chapter contains the following:

 ● Summary of Validated Models

 ● Access Application Components

 ● RAG Pipeline Validation

 ● Visibility and Monitoring

 ● Sizing Considerations

 This Cisco Validated Design offers a comprehensive platform for AI architects and practitioners to deploy [bookmark: MgmtPlane]Cisco Compute Hyperconverged with Nutanix GPT-in-a-Box.

 [bookmark: Summary_Models_Validated]Summary of Validated Models

 Table 15 lists the Generative AI models that were validated. However, it is possible to use a custom model.

 [bookmark: Table15]Table 15. Summary of Models

 	 Model Name

 	 HuggingFace Repository ID

 	 MPT-7B

 	 mosaicml/mpt_7b

 	 Falcon-7B

 	 tiiuae/falcon-7b

 	 Llama 2 – 7B

 	 meta-llama/Llama-2-7b-hf

 	 Code Llama-7B

 	 codellama/CodeLlama-7b-Python-hf

 	 Llama-2-Chat

 	 meta-llama/Llama-2-7b-chat-hf

 [bookmark: Inferencing_Software_Components]For more information on using custom model, go to: https://opendocs.nutanix.com/gpt-in-a-box/kubernetes/v0.2/custom_model/

 [bookmark: Access_Application_Components]Access Application Components

 When the bootstrapping is completed, you can access and test the LLM application.

 [bookmark: Conclusion]Procedure 1. Inferencing Service validation

 This procedure checks the inference service based on kserve is running as expected.

 Step 1. Switch to the workload cluster running the following commands:

 cd nai-llm-fleet-infra

 devbox shell

 eval $(task nke:switch-shell-env) (Choose NKE Workload Cluster)

 Step 2. Change the namespace to llm and check the route or look for instance of custom resource - inferenceservices.serving.kserve.io:

 kubens llm

 kubectl get inferenceservices.serving.kserve.io

 [image: A screenshot of a computerDescription automatically generated]

 Step 3. Copy the URL and paste the copied URL in browser or use curl and make sure it shows the following status:

 {"status":"alive"}

 Procedure 2. LLM Frontend Chat Application

 Step 1. Get the LLM Frontend ingress endpoint by running the following command:

 kubectl get ingress -n gptnvd-reference-app

 Step 2. Ensure the output is similar to this:

 Step 3. Copy the HOSTS address frontend.ntnx-k8-workload.rtp4.local from the above output and paste it in your browser. You should be able to see the LLM chat interface.

 [image: A screenshot of a computerDescription automatically generated]100XXXX

 Procedure 3. Test LLM Frontend Chat

 Step 1. Type any question in the chat box. For example, give me a python program to print the Fibonacci series?

 [image: A screenshot of a computerDescription automatically generated]

 [bookmark: RAG_Pipeline_Validation]Procedure 4. Access JupyterHub

 JupyterHub brings the power of notebooks to groups of users. It gives users access to computational environments and resources without burdening the users with installation and maintenance tasks.

 In the reference repository, JupyterHub is enabled in the "non-prod" environment type. It can be in the prod environment as well if required. jupyterhub-repo.yaml and jupyterhub-addons.yaml need to be copied to prod directory and include jupyterhub-addons.yaml in the prod/kustomization.yaml.

 The design also gives flexibility to create custom environment configurations based on the requirement and included as part of your workload cluster.

 Step 1. Get the jupyterhub ingress endpoint by running the following command:

 kubectl get ingress -n jupyterhub

 Step 2. Ensure the output is similar to this:

 Step 3. Copy the HOSTS address jupyter.ntnx-k8-workload.rtp4.local from the above output and paste it in your browser. You should be able to see JupyterHub login page.

 [image: A screenshot of a computerDescription automatically generated]

 Step 4. Four users (user1,user2,user3 and user4) and configured with default password nutanix.1. It can be customized in jupyterhub.yaml file present in platform/jupyterhub/_operators directory while bootstrapping cluster.

 Step 5. Input the username and password. Select GPU server to spawn a notebook with access to GPU

 [image: A screenshot of a computerDescription automatically generated]

 Step 6. Access the Jupyter Notebook.

 [image: A screenshot of a computerDescription automatically generated]

 RAG Pipeline Validation

 This example showcases RAG pipeline.

 Procedure 1. Validate the RAG pipeline

 Step 1. Ask a question which is internal to the organization of the information that was not available when the model was trained on. For example, What is UCS X210C?

 Step 2. Observe that LLM responds saying it doesn’t have the information or is providing the hallucinated response.

 [image: A screenshot of a chatDescription automatically generated]

 Step 3. Upload the Cisco UCS X210c M7 Spec Sheet:

 [image: A screenshot of a chatDescription automatically generated]

 Step 4. When the upload is complete, we re-execute the same query. LLM augments the relevant chunk of from the documents and passes as context to the query and produces the response.

 In the example below, the relevant information about UCS X210c is provided:

 [image: A screenshot of a chatDescription automatically generated]

 Step 5. You can also click each source and observe the chunks retrieved to answer the query:

 [image: A screenshot of a computerDescription automatically generated]

 Step 6. Observe that the output generation task is a 2 step process. In the first step, retriever searches and fetches information relevant to the prompt. The retrieved relevant information is augmented to the prompt as context. LLM is asked to generate response to the prompt in the context and User receives the response.

 [image: A screenshot of a computerDescription automatically generated] 110XXX

 [bookmark: Visibility_Monitoring]Visibility and Monitoring

 It is critical to gain complete visibility into the entire stack, including Physical infrastructure [Compute, Storage and Network], Virtualized infrastructure, NKE clusters and the Application stack. It helps to gain insight into infrastructure bottlenecks and factors that increase costs. and ensure the performance for model inferencing and applications making use of it.

 This section provides some ways of gaining visibility of the application stack.

 Application Insights

 The solution is integrated with Weave GitOps. Weave GitOps is an extension to Flux. It provides insights into your application deployments and makes continuous delivery with GitOps easier to adopt and scale.

 Weave GitOps’ intuitive user interface surfaces key information to help application operators easily discover and resolve issues—simplifying and scaling adoption of GitOps and continuous delivery. The UI provides a guided experience that helps you to easily discover the relationships between Flux objects and build understanding while providing insights into application deployments.

 Procedure 1. Access the UI guided experience

 Step 1. weavegitops is running on Management cluster. Switch to the management cluster by running the following commands:

 cd nai-llm-fleet-infra

 devbox shell

 eval $(task nke:switch-shell-env) (Choose NKE Management Cluster)

 Step 2. Change the namespace to weave-gitops:

 kubens weave-gitops

 Step 3. Get the ingress endpoints by running the following command:

 kubectl get ingress

 Step 4. Check that the output similar to this:

 Step 5. Copy the HOSTS address for attu gitops.ntnx-k8-mgmt.rtp4.localfrom the previous output and paste it in your browser:

 [image: A screenshot of a computerDescription automatically generated]

 Step 6. You can see different kinds of application Flux is managing like HelmRelease and Kustomization. Click any to see the details of different Kubernetes resources.

 [image: A screenshot of a computerDescription automatically generated]

 Step 7. You can also get a graphical view of different Kubernetes objects and its hierarchy:

 [image: A screenshot of a computerDescription automatically generated]

 Step 8. Dependency between application can also be observed:

 [image: A screenshot of a computerDescription automatically generated]

 Step 9. Sources from where the Flux has pulled each component can be observed:

 [image: A screenshot of a computerDescription automatically generated]

 Traces, Metrics, and Logs

 Uptrace is integrated into the solution to provide traces, metrics, and logs.

 Uptrace is an open source APM that supports distributed tracing, metrics, and logs. You can use it to monitor applications and troubleshoot issues. It comes with an intuitive query builder, rich dashboards, alerting rules, notifications, and integrations for most languages and frameworks. Uptrace uses OpenTelemetry framework to collect data.

 Procedure 1. Access Uptrace

 Step 1. Uptrace is running on Management cluster. Switch to the management cluster by running the following commands:

 cd nai-llm-fleet-infra

 devbox shell

 eval $(task nke:switch-shell-env) (Choose NKE Management Cluster)

 Step 2. Change the namespace to uptrace:

 kubens [And select uptrace namespace]

 [image: A close-up of a computer codeDescription automatically generated]

 Step 3. Get the ingress endpoints by running the following command:

 kubectl get ingress

 Step 4. Check that the output is similar to this:

 Step 5. Copy the HOSTS address for ingress service with name uptrace followed by management cluster name. In this example it is uptrace.ntnx-k8-mgmt.rtp4.local.Paste it in your browser.

 [image: A screenshot of a login boxDescription automatically generated]

 Note: The default login is uptrace@localhost with pass uptrace.

 The System Overview is shown below:

 [image: A screenshot of a computerDescription automatically generated]

 Logs and events can be seen in TRACES & LOGS tab:

 [image: A screenshot of a computerDescription automatically generated]

 Query metrics can be seen in DASHBOARDS > METRICS tab:

 [image: A screenshot of a computerDescription automatically generated]

 View Documents in Object Browser

 When the document is uploaded in the frontend application, the document gets stored as S3 objects in Nutanix Objects.

 Procedure 1. View documents

 Step 1. Log into the Prism Central web console.

 Step 2. In the Application Switcher, click Objects.

 Step 3. Select the name of the object store.

 Step 4. Click Actions and select Launch Objects Browser.

 [image: A screenshot of a computerDescription automatically generated]

 Step 5. Provide the access key and Secret Key.

 Step 6. Click the bucket which is configured to store the uploaded documents.

 [image: A screenshot of a computerDescription automatically generated]

 Step 7. Observe that the uploaded document can be seen here.

 [image: A screenshot of a computerDescription automatically generated]

 Step 8. Documents can also be uploaded directly from Objects Browser by clicking Upload Objects.

 [image: A screenshot of a computerDescription automatically generated]

 Explore Vector Database

 When the document is uploaded, Kafka event notification is sent to document ingestion serverless function that is running inside knative and that will trigger Milvus for vectorization. The solution is integrated with Attu.

 Attu is an efficient open-source management tool for Milvus. It features an intuitive graphical user interface (GUI), allowing you to easily interact with your databases. With just a few clicks, you can visualize your cluster status, manage metadata, perform data queries, and much more.

 Procedure 1. View cluster details

 Step 1. Milvus is running on Management cluster. Switch to the management cluster by running the following commands:

 cd nai-llm-fleet-infra

 devbox shell

 eval $(task nke:switch-shell-env) (Choose NKE Management Cluster)

 Step 2. Change the namespace to llm:

 kubens llm

 Step 3. Get the ingress endpoints by running the following command:

 kubectl get ingress -n milvus

 Step 4. Check that the output similar to this:

 [image: A close up of a computer screenDescription automatically generated]

 Step 5. Copy the HOSTS address for attu attu.ntnx-k8-mgmt.rtp4.local from the above output and paste it in your browser. You should be able to see the LLM chat interface.

 [image: A screenshot of a login screenDescription automatically generated]

 Step 6. Click Connect.

 Step 7. Observe that interface showing details of the database with the entity count. In this example, there are total of 217 chunks.

 [image: A screenshot of a computerDescription automatically generated]

 Step 8. Click your collection to see details of the database.

 [image: A screenshot of a computerDescription automatically generated]

 Step 9. Click Data Preview to see the content of the corresponding chunk, its document source, page number, and the corresponding vector embedding.

 [image: A screenshot of a computerDescription automatically generated]

 The interface proved various options for vector search:

 [image: A screenshot of a search engineDescription automatically generated]

 [bookmark: Sizing_Considerations]Sizing Considerations

 Key Terms

 Some of the key terms with respect to LLM inferencing are:

 ● Batch Size: Batch size refers to the number of samples that are processed together in a single inference run. The batch size can significantly impact the latency and throughput of the inference process. For example, increasing the batch size can increase throughput but at the cost of increased latency.

 ● Precision: The size in bytes used for each parameter in the model.

 ● Context Size: Represents the maximum number of tokens the model process for the prompt + response. (Input Tokens Length + Output Tokens Length)

 ● Key and Value Cache (KV Cache): The amount of memory consumed by a single token based on the model dimensions and layers.

 ● Activations: When a token is being processed within the model, it is called an Activation. Full activation memory is calculated from the KV Cache size and context size.

 LLM Inferencing Phases

 LLMs generate text in a two-step process:

 ● Prefill: In the first phase, the model ingests your prompt tokens in parallel, populating the key-value (KV) cache. Prefill generates the key and value cache (KV Cache) for future decoding.

 ● Decoding Phase: In the second phase, we leverage our current state (stored in the KV cache) to sample and decode the next token. We pay a small price in storage to not recalculate the cache for every single new token. Without the KV cache, every successive token would take longer to sample because we would have to pass all previously seen tokens through the model.

 The input sequence from the user is first tokenized in the same way the model's training data was tokenized. Then the tokens are fed to the trained model.

 As the first step of model execution, the input sequence is converted into an embedding vector in the embedding layer of the trained model. This vector essentially translates the token into a high-dimensional space where similar tokens have similar vectors.

 Using the token embeddings, queries, keys, and values for each token are computed through a process known as linear projection. Here, each token's embedding vector is multiplied by separate weight matrices learned during the training to produce the query, key, and value vectors.

 The concept of using queries, keys, and values is directly inspired by how databases work. Each database storage has its data values indexed by keys, and users can retrieve the data by making a query and comparing if the key value matches the query. In the LLM case, the model generates the queries itself. The key values are not directly compared to the query, but the relevance of each key to the query is computed using a compatibility function to generate a weight vector.

 An attention output is computed for each query as the weighted sum of the "values" using the weight vector previously computed.

 This attention output goes through a prediction (or decode) layer, which assigns probabilities to each token in the entire vocabulary of the model, indicating the likelihood of that token being the next one.

 One can sample from the predicted probability distribution to choose the next token probabilistically or select the token with the highest probability as the predicted next token.

 Cluster Sizing

 This CVD describes the design for a single GPT-in-a-Box cluster with four or more nodes. If one of the scaling factors (such as the total number of VMs, Kubernetes applications, or GPU workloads) exceeds the maximum specified for the solution, extend the cluster with the required capacity (CPU, memory, storage, GPU). After reaching the maximum cluster size, consider building a new cluster to support the demand for further growth.

 Infrastructure Considerations

 The following are the key factors for sizing infrastructure for Generative AI inferencing:

 Model Specifications

 ● Model Architecture: Understand the architecture of the language model, including the number of layers, attention heads, and parameters.

 ● Token Embedding Size: Larger embedding sizes can significantly impact memory requirements.

 Hardware Acceleration

 ● Mixed Precision: Explore mixed-precision training and inference to leverage hardware capabilities efficiently.

 Memory Requirements

 ● Model Size: Large language models can have substantial memory requirements. Ensure sufficient GPU memory for both the model and input sequences.

 ● Sequence Length: Consider the maximum sequence length the model can handle and its impact on memory usage.

 Batching and Parallelization

 ● Batch Size: Experiment with batch sizes. Larger batch sizes can improve throughput but may increase memory requirements.

 ● Data Parallelism: Implement data parallelism to distribute inference across multiple devices, if necessary.

 Latency and Throughput

 ● Latency Requirements: Language models often have real-time constraints, especially in interactive applications. Minimize latency based on use case.

 ● Throughput Targets: Determine the required throughput in terms of processed tokens or sequences per second.

 Scalability

 ● Model Parallelism: Consider model parallelism if the model size exceeds available GPU memory, distributing parts of the model across multiple GPUs.

 ● Infrastructure Scaling: Design for horizontal scalability to handle increased demand.

 Redundancy and High Availability

 ● Checkpointing: Implement regular model checkpointing to recover from failures without losing training progress.

 ● Replication: Use redundant systems to ensure high availability during inference.

 Network Considerations

 ● Bandwidth: Assess the network bandwidth required for transferring large model parameters between devices.

 ● Inter-Device Communication: Optimize communication patterns between devices to minimize latency.

 Storage Requirements

 ● Model Storage: Choose storage solutions capable of efficiently loading large model parameters.

 ● Data Storage: Assess storage needs for input data and any intermediate results.

 Containerization and Orchestration

 ● Containerization: Deploy the language model within containers for easier management and consistency across different environments.

 ● Orchestration: Use container orchestration tools like Kubernetes for managing and scaling the deployment efficiently.

 Middleware and Serving Frameworks

 ● Serving Framework: Choose a serving framework optimized for deploying large language models, such as TensorFlow Serving, Triton Inference Server, or others.

 ● Middleware: Implement middleware for handling communication between clients and the deployed model, ensuring compatibility with your application's requirements.

 Monitoring and Optimization

 ● Resource Monitoring: Employ monitoring tools to track GPU utilization, memory usage, and other relevant metrics.

 ● Dynamic Optimization: Optimize parameters dynamically based on real-time performance metrics.

 Security

 ● Data Protection: Implement measures to secure input and output data, especially if it involves sensitive information.

 ● Model Security: Protect large language models from adversarial attacks and unauthorized access.

 When selecting the GPU for this solution, there are several crucial factors to consider:

 ● Processing Power: Look for GPUs with sufficient computational power to handle the complex neural network computations required for LLM inference.

 ● Memory Capacity: LLM models often have large memory requirements. Ensure that the GPU has enough VRAM (Video RAM) to accommodate the model size and batch sizes.

 ● Tensor Cores: Tensor cores accelerate matrix operations, which are essential for LLM inference. GPUs with tensor cores (such as NVIDIA's RTX series) can significantly improve performance.

 ● Compatibility: Check if the GPU is compatible with the Cisco UCS and the deep learning framework you plan to use and if (e.g., TensorFlow, PyTorch).

 ● Power Consumption: Consider the GPU's power draw and ensure it aligns with your system's power supply capacity.

 Memory Calculations for LLM Inferencing

 Total Memory required is the sum of model memory size and the KV cache.

 Calculations for the required total memory is provided below:

 Model Memory Size = Model Parameters * Precision

 KV Cache Size = 2 x Batch Size x Context Size x Number of Layers x Model Dimensions x Precision

 Total Memory Requirements (GB) = Model Memory Size (GB) + KV Cache Size (GB)

 For some models, model dimension data might not be available. In that case, model dimension can be calculated as:

 Model Dimensions = Attention Head Size X Number of Attention Heads

 Model Parameters, Precision, Number of layers, Model Dimension are specific to models, and it can be found in the Model card for the model.

 Context Size and batch size are input from users.

 We will provide an example memory calculation for Llama 2.

 [image: A screenshot of a computerDescription automatically generated]

 For the Llama 2 model:

 Total model parameters: 6.74B Parameters.

 Precision: FP16. (2 Bytes)

 Number of layers: 32

 Model Dimension: 4096

 Therefore the model memory is calculated as shown below:

 Model Memory Size = Model Parameters * Precision

 Model Memory Size for Llama 2 = 6,740,000,000 * 2 Bytes/Parameter

 = 13,480,000,000 Bytes

 = 13.48 Giga Bytes

 Also, considering an example of maximum Input Tokens Length of 1024, Maximum Output Tokens Length of 1024, and the Batch size of 8, below are the calculations for KV Cache Size:

 KV Cache Size = 2 x Batch Size x Context Size x Number of Layers x Model Dimensions x Precision

 KV Cache Size = 2 x 8 x (1024+1024) x 32 x 4096 x 2 Bytes/Parameter

 = 8,589,934,592 Bytes

 = 8.59 Giga Bytes

 Therefore, Llama2 with maximum Input Tokens Length of 1024, Maximum Output Tokens Length of 1024, and the Batch size of 8, the total memory required is as shown below:

 Total Memory Requirements (GB) = Model Memory Size (GB) + KV Cache Size (GB)

 = 13.48 + 8.59 Giga Bytes

 = 22.07 Giga Bytes

 Performance Calculations

 Performance benchmark can be run on model

 Based on the performance requirement, number of users, number of input and output tokens, latency and throughput required, you can choose the appropriate Large Language Model, Inferencing backend, GPUs, and compute infrastructure.

 Performance of the model depends on the prefill and decode phases. These two phases have different impacts on the performance of the LLM. While the prefill phase effectively saturates GPU compute at small batch sizes, the decode phase results in low compute utilization as it generates one token at a time per request.

 The prefill phase is compute-bound, while the decode phase is memory-bound. So, the following factors need to be considered and measured:

 ● Prefill Latency

 ● Prefill Throughput

 ● Decode Total Latency

 ● Decode Token Latency

 ● Decode Throughput

 The performance benchmark can be run with different sizes (1,2,4,8,10,25,250, 100 and so on). Also, separate tests can be run focused on performance comparison between 2 different models.

 Conclusion

 This validated solution stands as a valuable resource for navigating the complexities of Generative AI application deployment in real-world enterprise environments with special focus on Retrieval Augmented Generation.

 This Cisco Validated Design for Cisco Compute Hyperconverged with Nutanix GPT-in-a-Box provides a foundational reference architecture for deployment of an innovative, flexible, and secure generative pretrained transformer (GPT) solution for Generative AI to privately run and manage organization’s choice of AI large language models (LLMs) and applications in which it leverages.

 In combination of Cisco UCS and Nutanix, this solution intends to enable an AI inferencing turnkey solution which can be quickly deployed as an on-premises solution. The infrastructure is designed using the Cisco UCS Managed HCIAF240C M7 All-NVMe servers configured with 2x NVIDIA L40S GPUs which leverages Software-defined Nutanix Cloud Infrastructure supporting GPU-enabled server nodes for seamless scaling of virtualized compute, storage, networking supporting Kubernetes-orchestrated containers and Nutanix Unified Storage.

 [bookmark: _Toc168037811]Appendix

 This appendix contains the following:

 ● Appendix A – Bill of Materials

 ● Appendix B – References used in this guide

 [bookmark: Appendix_A][bookmark: _Toc168037812][bookmark: _Toc136852404]Appendix A – Bill of Materials

 Table 16 provides list of the Bill of Materials used in this solution design, deployment and validation described in this document.

 [bookmark: Table21][bookmark: Table16]Table 16. Bill of Materials

 	 Line Number

 	 Part Number

 	 Description

 	 Quantity

 	 1.0

 	 HCI-M7-MLB

 	 Cisco Compute Hyperconverged M7 with Nutanix MLB

 	 1

 	 1.1

 	 HCIAF240C-M7SN

 	 Cisco Compute Hyperconverged HCIAF240cM7 All Flash NVMe Node

 	 4

 	 1.1.0.1

 	 CON-L1NCO-HCIAFM7C

 	 CX LEVEL 1 8X7XNCDOS Cisco Compute Hyperconverged HCIAF240cM

 	 4

 	 1.1.1

 	 HCI-FI-MANAGED

 	 Deployment mode for Server Managed by FI

 	 4

 	 1.1.2

 	 HCI-GPUAD-C240M7

 	 GPU AIR DUCT FOR C240M7

 	 4

 	 1.1.3

 	 HCI-NVME4-3840

 	 3.8TB 2.5in U.2 15mm P5520 Hg Perf Med End NVMe

 	 24

 	 1.1.4

 	 HCI-M2-240G

 	 240GB M.2 SATA Micron G2 SSD

 	 8

 	 1.1.5

 	 HCI-M2-HWRAID

 	 Cisco Boot optimized M.2 Raid controller

 	 4

 	 1.1.6

 	 HCI-RAIL-M7

 	 Ball Bearing Rail Kit for C220 & C240 M7 rack servers

 	 4

 	 1.1.7

 	 HCI-TPM-OPT-OUT

 	 OPT OUT, TPM 2.0, TCG, FIPS140-2, CC EAL4+ Certified

 	 4

 	 1.1.8

 	 HCI-AOSAHV-67-SWK9

 	 HCI AOS AHV 6.7 SW

 	 4

 	 1.1.9

 	 UCSC-HSLP-C220M7

 	 UCS C220 M7 Heatsink for & C240 GPU Heatsink

 	 8

 	 1.1.10

 	 UCSC-BBLKD-M7

 	 UCS C-Series M7 SFF drive blanking panel

 	 72

 	 1.1.11

 	 UCSC-M2EXT-240-D

 	 C240M7 2U M.2 Extender board

 	 4

 	 1.1.12

 	 UCSC-RISAB-24XM7

 	 UCS C-Series M7 2U Air Blocker GPU only

 	 4

 	 1.1.13

 	 CBL-G5GPU-C240M7

 	 C240M7 PCIe CEM compliant 12VHPWR power cable(up to 450W)

 	 8

 	 1.1.14

 	 HCI-CPU-I6442Y

 	 Intel I6442Y 2.6GHz/225W 24C/60MB DDR5 4800MT/s

 	 8

 	 1.1.15

 	 HCI-MRX32G1RE1

 	 32GB DDR5-4800 RDIMM 1Rx4 (16Gb)

 	 128

 	 1.1.16

 	 HCI-RIS1C-24XM7

 	 UCS C-Series M7 2U Riser 1C PCIe Gen5 (2x16)

 	 4

 	 1.1.17

 	 HCI-RIS2C-24XM7

 	 UCS C-Series M7 2U Riser 2C PCIe Gen5 (2x16) (CPU2)

 	 4

 	 1.1.18

 	 HCI-RIS3C-24XM7

 	 C240 M7 Riser 3C

 	 4

 	 1.1.19

 	 HCI-MLOM

 	 Cisco VIC Connectivity

 	 4

 	 1.1.20

 	 HCI-M-V5D200G

 	 Cisco VIC 15238 2x 40/100/200G mLOM C-Series

 	 4

 	 1.1.21

 	 HCI-GPU-L40S

 	 NVIDIA L40S: 350W, 48GB, 2-slot FHFL GPU

 	 4

 	 1.1.22

 	 HCI-NV-GRID-OPTOUT

 	 NVIDIA GRID SW OPTOUT

 	 4

 	 1.1.23

 	 HCI-GPU-L40S

 	 NVIDIA L40S: 350W, 48GB, 2-slot FHFL GPU

 	 4

 	 1.1.24

 	 HCI-NV-GRID-OPTOUT

 	 NVIDIA GRID SW OPTOUT

 	 4

 	 1.1.25

 	 HCI-PSU1-2300W

 	 Cisco UCS 2300W AC Power Supply for Rack Servers Titanium

 	 8

 	 1.1.26

 	 CAB-C19-CBN

 	 Cabinet Jumper Power Cord, 250 VAC 16A, C20-C19 Connectors

 	 8

 	 1.2

 	 HCI-FI-6536

 	 Cisco Compute Hyperconverged Fabric Interconnect 6536

 	 2

 	 1.2.0.1

 	 CON-L1NCO-HCIFI6BU

 	 CX LEVEL 1 8X7XNCDOS Cisco Compute Hyperconverged Fabric Int

 	 2

 	 1.2.1

 	 HCI-UCSM-MODE

 	 UCSM Deployment mode for FI

 	 2

 	 1.2.2

 	 N10-MGT018

 	 UCS Manager v4.2 and Intersight Managed Mode v4.2

 	 2

 	 1.2.3

 	 HCI-FI-6500-SW

 	 Perpetual SW License for the 6500 series Fabric Interconnect

 	 2

 	 1.2.4

 	 HCI-PSU-6536-AC

 	 UCS 6536 Power Supply/AC 1100W PSU - Port Side Exhaust

 	 4

 	 1.2.5

 	 CAB-9K12A-NA

 	 Power Cord, 125VAC 13A NEMA 5-15 Plug, North America

 	 4

 	 1.2.6

 	 UCS-ACC-6536

 	 UCS 6536 Chassis Accessory Kit

 	 2

 	 1.2.7

 	 UCS-FAN-6536

 	 UCS 6536 Fan Module

 	 12

 [bookmark: Appendix_B][bookmark: _Toc168037813][bookmark: _Toc136852405]Appendix B – References use in this guide

 Deployment & Field Guide to deploy Cisco Compute Hyperconverged with Nutanix

 https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/CCHC_Nutanix_ISM.html

 https://community.cisco.com/t5/unified-computing-system-knowledge-base/cisco-compute-hyperconverged-with-nutanix-field-guide/ta-p/4982563?attachment-id=228884

 Repository

 GitHub repository for solution: https://github.com/ucs-compute-solutions/nai-llm-fleet-infra

 GPT-in-a-Box Foundation

 https://opendocs.nutanix.com/gpt-in-a-box/overview/

 Cisco Compute Hyperconverged with Nutanix

 https://www.cisco.com/c/en/us/products/hyperconverged-infrastructure/compute-hyperconverged/index.html

 Cisco Intersight

 https://www.cisco.com/c/en/us/products/servers-unified-computing/intersight/index.html

 HCIAF240C M7 All-NVMe/All-Flash Server

 https://www.cisco.com/c/dam/en/us/products/collateral/hyperconverged-infrastructure/hc-240m7-specsheet.pdf

 Nutanix Reference Documentation

 https://portal.nutanix.com/

 [bookmark: _Toc94534594][bookmark: About_Authors]About the Authors

 Anil Dhiman, Technical Marketing Engineer, Cisco Systems, Inc.

 Anil Dhiman has over 20 years of experience specializing in data center solutions on Cisco UCS servers, and performance engineering of large-scale enterprise applications. Over the past 14 years, Anil has authored several Cisco Validated Designs for enterprise solutions on Cisco data center technologies. Currently, Anil's focus is on Cisco’s portfolio of hyperconverged infrastructure and data protection solutions.

 Paniraja Koppa, Technical Marketing Engineer, Cisco Systems, Inc.

 Paniraja Koppa is a member of the Cisco Unified Computing System (Cisco UCS) solutions team. He has over 15 years of experience designing, implementing, and operating solutions in the data center. In his current role, he works on design and development, best practices, optimization, automation and technical content creation of compute and hybrid cloud solutions. He also worked as technical consulting engineer in the data center virtualization space. Paniraja holds a master’s degree in computer science. He has presented several papers at international conferences and speaker at events like Cisco Live US and Europe, Open Infrastructure Summit, and other partner events. Paniraja’s current focus is on Generative AI solutions.

 Wolfgang Huse, Sr. Staff Solution Architect – Cloud Native & AI, Nutanix, Inc.

 Wolfgang Huse is the technical lead for Cloud Native in Solutions and Performance Engineering team at Nutanix and is based out of Germany. In this role, he and his team are primarily responsible for development of cloud native solutions and evangelizing the benefits of adopting cloud native architectures within Nutanix Cloud Platform. Wolfgang and his team have been instrumental in building many key solution artifacts such as the various Nutanix tech notes, best practice guides and validated designs to support solutions such as RedHat OpenShift, Rancher and most recently Nutanix GPT in-a-Box. Prior to this role, he worked in sales engineering roles at Nutanix, directly providing assistance on designing and implementing complex solutions, globally.

 Jesse Gonzalez, Staff Solution Architect – Cloud Native & AI, Nutanix, Inc.

 Jesse Gonzalez is a Cloud Native Solutions Architect on the Solutions and Performance Engineering team at Nutanix. With over 20+ years of experience in IT, Jesse has had the privilege of working closely with many organizations of all sizes to overcome their challenges in enabling cloud-native (and more recently Generative AI) solutions on the Nutanix platform. Prior to this role, Jesse has worked in roles within both services and sales engineering at Nutanix.

 Acknowledgements

 For their support and contribution to the design, validation, and creation of this Cisco Validated Design, the authors would like to thank:

 ● Chris O'Brien, Senior Director, Cisco Systems, Inc.

 ● John McAbel, Product Manager, Cisco Systems, Inc.

 [bookmark: _Toc94534596][bookmark: _Toc16755027]Feedback

 For comments and suggestions about this guide and related guides, join the discussion on Cisco Community at https://cs.co/en-cvds.

 CVD Program

 ALL DESIGNS, SPECIFICATIONS, STATEMENTS, INFORMATION, AND RECOMMENDATIONS (COLLECTIVELY, "DESIGNS") IN THIS MANUAL ARE PRESENTED "AS IS," WITH ALL FAULTS. CISCO AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THE DESIGNS, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 THE DESIGNS ARE SUBJECT TO CHANGE WITHOUT NOTICE. USERS ARE SOLELY RESPONSIBLE FOR THEIR APPLICATION OF THE DESIGNS. THE DESIGNS DO NOT CONSTITUTE THE TECHNICAL OR OTHER PROFESSIONAL ADVICE OF CISCO, ITS SUPPLIERS OR PARTNERS. USERS SHOULD CONSULT THEIR OWN TECHNICAL ADVISORS BEFORE IMPLEMENTING THE DESIGNS. RESULTS MAY VARY DEPENDING ON FACTORS NOT TESTED BY CISCO.

 CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco WebEx, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unified Computing System (Cisco UCS), Cisco UCS B-Series Blade Servers, Cisco UCS C-Series Rack Servers, Cisco UCS S-Series Storage Servers, Cisco UCS X-Series, Cisco UCS Manager, Cisco UCS Management Software, Cisco Unified Fabric, Cisco Application Centric Infrastructure, Cisco Nexus 9000 Series, Cisco Nexus 7000 Series, Cisco Prime Data Center Network Manager, Cisco NX-OS Software, Cisco MDS Series, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trade-marks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries. (LDW_P3)

 All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0809R)

