
Contents

Introduction
Background
Relevant Commands
Path Failure detection
Various Examples of path fail traps and explanations
Related Cisco Support Community Discussions

Introduction

This article covers understanding and troubleshooting Evolved General Packet Radio Service
Tunneling Protocol for Control Plane (EGTPC) / GTPC (3rd Generation Partnership Project
Technical Specification 29.274), GPRS Tunnelling protocol User Plane (GTPv1-U) (3GPP TS
29.281), and most relevant to this article, Restoration Procedures (3GPP TS 23.007) issues ,
which revolve around such concepts as restart counters, path failures detection, and echo
requests/responses. It includes a list of relevant commands and what to look for in the output,
along with explanation of related configurables. This is certainly an area for which a lot of
questions are raised. Note that troubleshooting specific call control issues is in itself a very
extensive area of interest, but this article only mentions how to capture statistics for call control -
anything beyond that (i.e. call setup issues) is not covered. Really this article focuses mainly on
troubleshooting and verifying the peer connections, without which there would be no call control.
While written for operators, designers / implementers could also benefit from the content here.
Examples all use fake (changed) IP addresses from a real operator's network.

Background

Each side of a GTP connection (one of S5 (Serving Gateway (SGW) - Packet Data Network
Gateway (PGW)), S11 (Multimedia Management Entity (MME) - SGW), S4 (Serving GPRS
Service Node (SGSN) - Gateway GPRS Service Node (GGSN)) maintains a restart counter that
is designed to alert the peer if the originating node has restarted so that that peer can take the
appropriate action. While a node can use a unique counter for each peer it talks to, the design
tends to be to use the SAME counter for all the peers, since when the node restarts, the counter
needs to be incremented for all peers, and so tracking a separate value on a peer basis serves no
extra benefit since they all need to increase by one anyway. In fact using the same restart counter
for all peers is helpful in troubleshooting a large network where all the peers can be checked to
make sure that the restart counters received have the same (single) value for the node those
peers are talking to.
The restart counter CAN be included in all types of control messages, while the restart counter
MUST be included in all echo requests and responses. As soon as a restart counter change
occurs on a node, the various peers are informed about it via the next control messages sent to
the respective peers. When a restart occurs, per specification, the receiving side has the option of
temporarily maintaining the calls it has for a short while or in dropping them, the latter which is
typically what is the configured behavior.
In the case of using echo requests, the method is to send the messages on a configured interval,
and if no response is received after a configured number of retries (each after a configured
timeout), the path is considered to be down and the appropriate action taken. Configuration allows
for echos to be optionally sent, and this would apply to the peer as well, whose approach doesn't
necessarily have to be the same, especially when the peer could be from a different vendor and/or

http://www.3gpp.org/DynaReport/29274.htm
http://www.3gpp.org/DynaReport/29281.htm
http://www.3gpp.org/DynaReport/23007.htm

different carrier. In fact with regards to Echo responses, a node is only obligated to respond to an
Echo request - whether it receives echos or not and with what frequency is not significant - it just
needs to send an echo response for each request, and to take action if the restart counter
received changes. Of course as already mentioned, IF it is also sending echo requests and
doesn't receive timely responses, it needs to take action for that scenario as well.
Note that path failure detection can also be done over the GTP-U (user plane) connection via
Echo, but ONLY via timeout, since there is no restart counter included in GTP-U messages like
there is for GTP-C as previously discussed. GTP-U may or may not be using the same path as by
control messages. If it is the same path, then GTP-U detection may not be as valuable since GTP-
C detection should be sufficient.
In summary, here are the ways that path failure detection can be done:

Restart Counter Change (via control msg Req/Rsp or Echo)●

GTPC Echo Req Time out●

GTPU Echo Req Time out●

Control Req Message Time-out (usually not configured)●

Relevant Commands

In order to troubleshoot any kind of path issues, familiarize with the following commands.
Following is an explanation of the relevant details of each.

show [egtpc-service | gtpu-service] all●

show egtpc peers [egtp-service <service>]●

egtpc test echo gtp-version {1 | 2} src-address <service address> peer-address <peer
address>

●

show egtpc statistics [[[(sgw-address | pgw-address | mme-address) <address>] [demux-
only]] [debug-only] [verbose] | path-failure-reasons]

●

show gtpu statistics [peer-address <peer>]●

show gtpc statistics [ggsn-service <service>] [smgr-instance <instance>]●

show demux-mgr statistics <egtpinmgr | egtpegmgr | gtpumgr> all (SGW-egress |
GGSN/ PGW,/SGW ingress | GTPU)

●

EGTPCPathFail[Clear], EGTPUPathFail[Clear] SNMP traps●

show session disconnect-reasons - gtpc-path-failure, gtpu-path-failure, path-failure●

Other commands for counting subscribers related to GTP:
show sub [summary] ggsn-service <service>
show sub [summary] gtpu-service <service>
show egtpc sessions [egtp-service <service>]
The basic command to check the status and configuration of all EGTP services is "show egtpc-
service". Most of the output should be what is already known via the configuration, as well as the
status should be STARTED. The unique piece of information gleaned is the "Restart Counter"
which cannot be found anywhere else. Related command "show gtpu-service all" returns
configurables for the GTPU service(s) that are associated with the EGTPC services.
"show egtpc peers" is very useful in identifying all of the peers, including statuses, restart
counters, and current/max subscriber counts.

Note that this command covers both SGW and SGSN peers, whereas in the past there was a
separate command for SGSN/GGSN.

●

Since this command includes all peer types, the peer type can be filtered on via the service
name (Even though the keyword egtpc-service deceptively also takes a GGSN service name).

●

If there are no subscribers with the peer, then the status is Inactive and GTPC Echo disabled.●

In that state, for EGTPC there MAY be some peers for which the Restart counter is reported,
while most may be 0. This occurs for situations where the peer is actively sending echo
requests to which ASR5K should be responding. The restart counter can be determined by
running the EGTPC test command (discussed next), though in the inactive state, the counter
will not be updated in "show egtpc peers" even though it was received. Meanwhile for
GGSN, the restart counter is never forgotten.

 Note a couple peers below that have counts much higher than the other peers. These are for
SGWs that are physically located in the same site or the sister site of the PGW to which the MME
funnels most calls.
Note that running this command on an Inter-Chassis Service Redundancy (ICSR) standby node is
only relevant for active peers, in which case the numbers should be close, for example in the
following pair:

PGW> show egtpc peers ... 20:51:52 (ACTIVE)
PGW-ICSR> show egtpc peers ... 20:51:51
(STANDBY)

Peer RC
#
sessions

Max Sess Peer RC
#
sessions

Max
Sess

AESKS 192.0.2.5 2 31 443 ADSKS 192.0.2.5 2 31 443

AESKS
192.0.2.2
4

3 117 123 ADNKS
192.0.2.2
4

3 117 123

AESKS
192.0.2.3
6

15 4223 6889 ADSKS
192.0.2.3
6

15 4223 6889

AESKS
192.0.2.4
4

7 119 331 ADSKS
192.0.2.4
4

7 119 331

AESKS
192.0.2.6
8

34 6174 9798 ADSKS
192.0.2.6
8

34 6171 9797

AESKS
192.0.2.6
9

7 2311 5027 ADSKS
192.0.2.6
9

7 2311 5027

AESKS
192.0.2.8
8

17 3914 8880 ADSKS
192.0.2.8
8

17 3913 8874

AESKS
192.0.2.1
64

16 833705 1298070 ADSKS
192.0.2.1
64

16 832037 1294412

AESKS
192.0.2.1
84

3 1438418 2153317 ADSKS
192.0.2.1
84

3 1435461 2147280

AESKS
192.0.2.1
93

21 11447 26577 ADSKS
192.0.2.1
93

21 11443 26568

AESKS
192.0.2.1
95

5 48 162 ADSKS
192.0.2.1
95

5 48 162

AESKS
192.0.2.2
26

21 1962 3931 ADSKS
192.0.2.2
26

21 1962 3931

AESKS
192.0.2.2
27

6 4465 9332 ADSKS
192.0.2.2
27

6 4466 9332

"egtpc test echo" is used to check a specific peer to see if it is reachable or not and must be run
in the context where the service is defined.

Use gtp-version 1 for GGSN-SGSN connections●

Using ping command is not a valid test, though if it is successful, it is known that there is some
level of reachability.

●

The peer restart counter (Recovery) is displayed.●

Running this command will increment the Tx echo request / Rx Echo response counters in
"show egtpc statistics"

●

The restart counter of the peer is reported after Recovery keyword (11 in example below)●

Warning: though this should not happen in normal circumstances, if a test echo is performed●

on a peer and it times out for whatever reason (if all is working then it shouldn't time out), all
the calls would e dropped (even though things were working just fine up to the point of doing
the test).

"show egtpc statistics" is for EGTPC (v2) and reports on success/failures of many EGTPC
control messages (Request/Response, Tx/Rx) including Create Session, Modify Bearer, Delete
Session, Downlink Data Notify, Release Access Bearer, Create Bearer, Update Bearer, Modify
Bearer, Suspend, etc., and the associated responses. It includes all path management counters
for Echo Request/Response Tx/Rx, and based on the timers, the growth of these timers can be
predicted and used to troubleshoot if not incrementing as expected.
The following example shows echos and responses being initiated and responded to from both
sides. Note that the SGW has been configured to send once per minute while the PGW has been
configured for once every three minutes (both sides don't need to have the same setting) and so
every three minutes there are twice the number of packets (6:16:33, 6:19:33). Keep in mind that
although both sides are on the same "cycle" in this example, they do not have to be and can run
independent of eachother. The restart counters has been captured in a column as well. Note the
Restart counter of 11 from the SGW's echo response matches the value from its response to the
PGW's test echo from above (the test was done at different time than the packet capture but for
the same peer pair).

The demux-only option captures all the path management counters (echo requests/responses) as
well as control messages that never reach a sessmgr, which is generally Create Session
Request/Response. Demux process etpinmgr residing on the Demux card is responsible for
handling all echo request/response and initial handling of all call control messages before
distributing them to the appropriate sessmgrs (randomly for new calls, and specifically for existing
calls anchored on a specific sessmgr). The sessmgr-only option conversely only counts
messages that get handled by sessmgrs, which does NOT include path management counters.
Not specifying either qualifiers is the default of counting all values.
"show gtpc statistics" is the analogous command for SGSN/GGSN services (GTPC v1) (CPC,
Update PDP Context, etc.)
"show gtpu statistics" reports stats on the user-plane traffic handled by the GTP-U service(s)
that are associated with EGTPC service(s). One interesting counter is Error Indication Tx/Rx which

would be sent when the receiving node has no record of the subscriber that should be associated
with the Terminal Endpoint Identifier (TEID) of the packet in question which could happen for a
number of reasons (The bulkstats schema/variable is GTPU1/ err-ind-tx). If the MME/SGW has not
been informed that the PGW no longer has a binding to the subscriber, then calls may need to be
manually cleared on the MME/SGW (or wait for them to timeout) to fully resolve such an issue of
orphaned calls.
The peer specific versions of the above stat commands are necessary when troubleshooting
specific peers, which often is the case.

Path Failure detection

The EGTPCPathFail trap is the key for knowing when a path failure has occurred. Amongst some
basic values that one would already assume, it reports the number of calls dropped, the old and
new restart counters, and the reason for the failure. In addition, the session disconnect reason
gtpc-path-failure will be incremented.
The EGTPCPathFailClear trap will indicate the restart counter along with the reason for the path
clearing. The most recent StarOS v17 is better worded to say "clear reason" instead of "failure
reason" (it cleared, not failed!) to avoid confusion.
The following are path failure counts that are reported from "show egtpc stat path-failure-
reasons"
Notes:

Control message restart counter at sessmgr could be any type of control message (not all
listed here)

●

Changed restart counter from the SGSN via the next Create PDP Context Request after that
change (

●

Changed restart counter from the SGSN via the next Update PDP Context Request after that
change (which would be a handoff from another SGSN) (upc-restart-counter-change)

●

Path clear failure reason sessions-add is a deceiving term - it is not a failure but a success,
and it indicates that a new session has come in to establish the connection

●

If the values reported for restart counters and session counts for the PathFail and PathClear
traps do not seem to line up, open a ticket with Cisco for further explanation.

●

It is important to understand how EGTPC/GTPC and to a lesser degree EGTPU/GTPU (as user-
plane failure detection is not always configured) path failure detection is implemented to monitor
the connection between a GGSN or PGW and the various peer SGSN and SGWs. Normally the
connections within a service providers network are fairly stable, in which case path failures are
infrequent. On the flip side, experience has shown that GTPC paths amongst roaming SGSNs
connecting to GGSNs may not be so stable, and so with poor connections the result is path
failures happening at a fairly frequent basis.
The following config covers timers and transmission frequency for control and echo messages
which can be used to detect path failures. Same concept applies to GGSN, SGW, MME, and
EGTP services:
 ggsn-service GGSN1
retransmission-timeout
20

For GTP control messages (versus the echo messages)

max-retransmissions 5
for BOTH GTP control and echo messages – how many times to retransmit before
path failure detection trigger

echo-interval 120 An echo is sent every 2 minutes (120 seconds).
echo-retransmission-
timeout 5

For Echos, if no response, it retransmits every 5 seconds

path-failure detection-
policy gtp echo

Path failure detection is possible via gtp echo (versus not using this as a method of
detecting path failure (but still sending echos)).

associate gtpu-service
GGSN1_gtpu

Associates the named GTPU service GGSN1_gtpu with this GGSN service

bind ipv4-address
209.165.201.2

The user and control plane bind IP addresses are the same in the following example
configs, but may not necessarily be configured as such with other service provider
implementations.

 Notes:

Given time 0 being when an Echo request cycle starts (every 2 minutes), if there are no
responses after a TOTAL of 30 seconds (6 attempts), the path fails (0 + 5sec + (5 * 5sec))

●

Process egtpinmgr (gtpcmgr deprecated since v14) running on the demux card is responsible
for processing the echo packets

●

“show gtp statistics”, section “Path Management Messages” has statistics for the echo
requests/responses for the control path in BOTH directions:

●

Another method of path detection is on the user plane instead of the control plane, and this is
governed by the following config.

Notes:

“no echo-interval” disables sending of echo requests for user plane and therefore CLI “path-
failure detection-policy gtp echo” has no relevance – NO Path failure detection is done on
GTPU

●

GGSN still does respond to echo requests from the SGSN though ●

“show gtpu stat” and “show demux-mgr stat gtpumgr” capture echo stats●

Various Examples of path fail traps and explanations

Usually the peer restart counter will increase by one when there is a restart. In this case, a bug in
PGW caused it to override the restart counter to the value of the RC of another peer (first trap),
and so when the next packet arrived over the connection, it treated it as a restart (second trap)
thinking that the RC had changed. The path then clears on any successive packet (third trap). The
point here is not to know about a specific bug but rather to try and be aware of any counter
changes that cannot be explained.
This example is from a GGSN where the peer SGSN has changed its RC from 66 to 67 via a
Create PDP Context Request:

This example is from a PGW where the peer ePDG has changed its RC from 69 to 70 via a Create
Session Request:

In this example, the output from various PGW nodes all connected to the same SGW show that
the SGW stopped becoming reachable from the PGWs per an EGTPCPathFail trap at the various
PGWs within a short time frame of eachother. Note that all show the same old restart counter as
was discussed earlier that normally a node uses the same counter for all its peers. In the case of
no response, the new restart counter displayed is 9, but the new counter might better be printed as
undefined since the connection is down as of when the trap is triggered and so having a restart
counter doesn't really make sense.
The following example shows a path failure and same new restart counter as in the previous
example, but then a half hour later shows when the peer comes back up again and the counter
has increased by one from 15 to 16. Over time the count increases for that peer:

Wed Jul 22 05:07:08 2015 Internal trap notification 1112 (EGTPCPathFail) context XGWin, service

EGTP1, interface type pgw-ingress, self address 209.165.201.13, peer address 198.51.100.162,

peer old restart counter 15, peer new restart counter 15, peer session count 34, failure

reason no-response-from-peer

Wed Jul 22 05:38:00 2015 Internal trap notification 1113 (EGTPCPathFailClear) context XGWin,

service EGTP1, interface type pgw-ingress, self address 209.165.201.13, peer address

198.51.100.162, peer restart counter 16, peer session count 1, clear reason sessions-update

[local]PGW> show egtpc peers

Wednesday July 22 10:04:30 UTC 2015

||||| Service Restart--------+ No. of

||||| ID Counter | restarts

||||| | | | Current Max

vvvvv v Peer Address v v sessions sessions

----- --- --------------------------------------- --- --- -----------

AESKS 5 198.51.100.162 16 1 1157 2186

[XGWin]PGW> egtpc test echo gtp-version 2 src-address 209.165.201.13 peer-address 198.51.100.162

Wednesday July 22 10:52:41 UTC 2015

EGTPC test echo

Peer: 198.51.100.162 Tx/Rx: 1/1 RTT(ms): 51 (COMPLETE) Recovery: 16

(0x10)

This example shows a repeating path failure due to CPC restart for 3 specific SGSN peers to the
GGSN. The output below shows just one of the peers 209.165.200.225, but they all have the
same issue. Repeated run of "show egtpc peers" and "show gtpc stat sgsn-address" also shows
the alternating values. "show gtpc stat" confirms no issue with connectivity with respect to echo
requests and responses, which in this case are only being initiated by the GGSN (acceptable as
discussed earlier). One sidebar point to be made here is that there are often multiple pieces of
data that can be collected that all corroborate to the same conclusion - one can choose to collect
the data that is the most conclusive with the minimal amount of effort.
show snmp trap history verbose | grep -E "209.165.201.31|209.165.200.225|209.165.200.246"

Mon Jun 22 22:20:51 2015 Internal trap notification 1112 (EGTPCPathFail) context XGWin, service

GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225, peer

old restart counter 129, peer new restart counter 132, peer session count 3, failure reason

cpc-restart-counter-change

Mon Jun 22 22:20:51 2015 Internal trap notification 1113 (EGTPCPathFailClear) context XGWin,

service GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225,

peer restart counter 132, peer session count 4, clear reason sessions-add

Mon Jun 22 22:20:55 2015 Internal trap notification 1112 (EGTPCPathFail) context XGWin, service

GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225, peer

old restart counter 132, peer new restart counter 129, peer session count 3, failure reason

cpc-restart-counter-change

Mon Jun 22 22:20:55 2015 Internal trap notification 1113 (EGTPCPathFailClear) context XGWin,

service GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225,

peer restart counter 129, peer session count 4, clear reason sessions-add

Mon Jun 22 22:20:58 2015 Internal trap notification 1112 (EGTPCPathFail) context XGWin, service

GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225, peer

old restart counter 129, peer new restart counter 132, peer session count 3, failure reason

cpc-restart-counter-change

Mon Jun 22 22:20:58 2015 Internal trap notification 1113 (EGTPCPathFailClear) context XGWin,

service GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225,

peer restart counter 132, peer session count 4, clear reason sessions-add

Mon Jun 22 22:21:02 2015 Internal trap notification 1112 (EGTPCPathFail) context XGWin, service

GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225, peer

old restart counter 132, peer new restart counter 129, peer session count 2, failure reason

cpc-restart-counter-change

Mon Jun 22 22:21:02 2015 Internal trap notification 1113 (EGTPCPathFailClear) context XGWin,

service GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225,

peer restart counter 129, peer session count 3, clear reason sessions-add

Mon Jun 22 22:21:03 2015 Internal trap notification 1112 (EGTPCPathFail) context XGWin, service

GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225, peer

old restart counter 129, peer new restart counter 132, peer session count 4, failure reason

echo-rsp-restart-counter-change

Mon Jun 22 22:21:03 2015 Internal trap notification 1113 (EGTPCPathFailClear) context XGWin,

service GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225,

peer restart counter 132, peer session count 5, clear reason sessions-add

Mon Jun 22 22:21:06 2015 Internal trap notification 1112 (EGTPCPathFail) context XGWin, service

GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225, peer

old restart counter 132, peer new restart counter 129, peer session count 2, failure reason

cpc-restart-counter-change

Mon Jun 22 22:21:06 2015 Internal trap notification 1113 (EGTPCPathFailClear) context XGWin,

service GGSN1, interface type ggsn, self address 209.165.202.129, peer address 209.165.200.225,

peer restart counter 129, peer session count 3, clear reason sessions-add

[XGWin]GGSN> show egtpc peers | grep 209.165.200.225

||||| Service Restart No. of

||||| ID Counter restarts

||||| | | | Current Max

vvvvv v Peer Address | | sessions sessions

| | |

v v v

Monday June 22 23:09:26 UTC 2015

AESKG 6 209.165.200.225 129 86339 2 57

[XGWin]GGSN> show egtpc peers | grep 209.165.200.225

Monday June 22 23:09:28 UTC 2015

AESKG 6 209.165.200.225 129 86341 3 57

[XGWin]GGSN> show egtpc peers | grep 209.165.200.225

Monday June 22 23:09:29 UTC 2015

AESKG 6 209.165.200.225 132 86342 7 57

[XGWin]GGSN> show egtpc peers | grep 209.165.200.225

Monday June 22 23:09:30 UTC 2015

AESKG 6 209.165.200.225 132 86344 9 57

[XGWin]GGSN> show egtpc peers | grep 209.165.200.225

Monday June 22 23:09:31 UTC 2015

AESKG 6 209.165.200.225 129 86345 11 57

[XGWin]GGSN> show egtpc peers | grep 209.165.200.225

Monday June 22 23:09:32 UTC 2015

AESKG 6 209.165.200.225 129 86345 7 57

[XGWin]GGSN> show gtpc statistics sgsn-address 209.165.200.225

Monday June 22 23:07:36 UTC 2015

SGSN Address: 209.165.200.225 Status: Active

Total Restarts: 86287 Restart Counter: 129

Session Stats:

 Total Current: 2 S6b Assume Positive: 0

 ...

Path Management Messages:

 Echo Request RX: 0 Echo Response TX: 0

 Echo Request TX: 22919 Echo Response RX: 22917

Looking at other peers in the subnet, they all show a RC = 132 all the time, while the broken peers
alternate between 129 and 132 as just shown, which points towards these SGSN peers as
potentially passing the wrong RC in the broken scenarios:
 Restart

Counter

AESKG 6 209.165.200.225 129 85115 8 57 <==

IDNKG 6 209.165.200.226 132 21 0 3 AESKG 6 209.165.200.227 132 60 47 92 AESKG 6

209.165.200.228 132 53 24 59 AESKG 6 209.165.200.229 132 69 92 126 AESKG 6 209.165.200.232 132

66 21 30 AESKG 6 209.165.200.236 132 43 8 21 AESKG 6 209.165.200.238 132 49 18 32 AESKG 6

209.165.200.239 132 39 1 6 AENKG 6 209.165.200.240 132 17 1 5 AESKG 6 209.165.200.241 132 67 6

43 AESKG 6 209.165.200.242 132 56 22 29 AENKG 6 209.165.200.243 132 40 2 9 AENKG 6

209.165.200.246 129 17713 3 24 <==

AESKG 6 209.165.200.247 132 64 29 45

AESKG 6 209.165.200.250 132 62 42 56

Recall from earlier, another approach to issues like this is to check other GGSNs (or PGWs for
LTE) to see if they have the same issue with those seemingly problematic SGSN peers, and in this
case they do also. For GGSN3 the first run of the command showed values 132 for both peers but
another run showed 129 for one of the peers. Multiple runs (not shown here for brevity) would
show all GGSNs bouncing between the two RCs for those peers over time:
 Restart

Counter

AESKG 6 209.165.200.225 129 85115 8 57 <==

IDNKG 6 209.165.200.226 132 21 0 3 AESKG 6 209.165.200.227 132 60 47 92 AESKG 6

209.165.200.228 132 53 24 59 AESKG 6 209.165.200.229 132 69 92 126 AESKG 6 209.165.200.232 132

66 21 30 AESKG 6 209.165.200.236 132 43 8 21 AESKG 6 209.165.200.238 132 49 18 32 AESKG 6

209.165.200.239 132 39 1 6 AENKG 6 209.165.200.240 132 17 1 5 AESKG 6 209.165.200.241 132 67 6

43 AESKG 6 209.165.200.242 132 56 22 29 AENKG 6 209.165.200.243 132 40 2 9 AENKG 6

209.165.200.246 129 17713 3 24 <==

AESKG 6 209.165.200.247 132 64 29 45

AESKG 6 209.165.200.250 132 62 42 56

Finally to confirm the issue is the SGSN changing the RC, monitor subscriber menu option by
SGSN peer shows changing RCs. When it does change, all calls would be disconnected with
path-failure as the disconnect reason. A screenshot of a packet capture also shows this:
[XGWin]GGSN> mon sub

Monday June 22 23:34:22 UTC 2015

 y) By SGSN IP Address

 IP Address: [209.165.200.225]

INBOUND>>>>> 23:35:32:688 Eventid:47000(3)

GTPC Rx PDU, from 209.165.200.225:2123 to 209.165.202.129:2123 (176)

TEID: 0x00000000, Message type: GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10)

Sequence Number:: 0x1DB8 (7608)

...

 IMSI: 300420078559902 Recovery: 0x81 (129)

...

CONTROL 23:36:00:363 Eventid:10285

 Disconnect Reason: path-failure

INBOUND>>>>> 23:36:48:414 Eventid:47000(3)

GTPC Rx PDU, from 209.165.200.225:2123 to 209.165.202.129:2123 (176)

TEID: 0x00000000, Message type: GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10)

Sequence Number:: 0x3E2D (15917)

...

 IMSI: 300420125984926

 Recovery: 0x84 (132)

...

INBOUND>>>>> 23:37:28:337 Eventid:47000(3)

GTPC Rx PDU, from 209.165.200.225:2123 to 209.165.202.129:2123 (176)

TEID: 0x00000000, Message type: GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10)

Sequence Number:: 0x3517 (13591)

...

 IMSI: 300420094205377

 Recovery: 0x84 (132)

... Monday June 22 2015 INBOUND>>>>> 23:37:40:559 Eventid:47000(3) GTPC Rx PDU, from

209.165.200.225:2123 to 209.165.202.129:2123 (176) TEID: 0x00000000, Message type:

GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10) Sequence Number:: 0x4E47 (20039) ... IMSI: 300420194755472

Recovery: 0x81 (129)

... ***CONTROL*** 23:37:40:755 Eventid:10285 Disconnect Reason: path-failure

This example shows a path failure where the problem was actually in the path and not the PGW or
SGW. As a result, the RC remains the same when path re-establishes. In the second peer
example the clear is a result of echo request establishment:
[XGWin]GGSN> mon sub

Monday June 22 23:34:22 UTC 2015

 y) By SGSN IP Address

 IP Address: [209.165.200.225]

INBOUND>>>>> 23:35:32:688 Eventid:47000(3)

GTPC Rx PDU, from 209.165.200.225:2123 to 209.165.202.129:2123 (176)

TEID: 0x00000000, Message type: GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10)

Sequence Number:: 0x1DB8 (7608)

...

 IMSI: 300420078559902 Recovery: 0x81 (129)

...

CONTROL 23:36:00:363 Eventid:10285

 Disconnect Reason: path-failure

INBOUND>>>>> 23:36:48:414 Eventid:47000(3)

GTPC Rx PDU, from 209.165.200.225:2123 to 209.165.202.129:2123 (176)

TEID: 0x00000000, Message type: GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10)

Sequence Number:: 0x3E2D (15917)

...

 IMSI: 300420125984926

 Recovery: 0x84 (132)

...

INBOUND>>>>> 23:37:28:337 Eventid:47000(3)

GTPC Rx PDU, from 209.165.200.225:2123 to 209.165.202.129:2123 (176)

TEID: 0x00000000, Message type: GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10)

Sequence Number:: 0x3517 (13591)

...

 IMSI: 300420094205377

 Recovery: 0x84 (132)

... Monday June 22 2015 INBOUND>>>>> 23:37:40:559 Eventid:47000(3) GTPC Rx PDU, from

209.165.200.225:2123 to 209.165.202.129:2123 (176) TEID: 0x00000000, Message type:

GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10) Sequence Number:: 0x4E47 (20039) ... IMSI: 300420194755472

Recovery: 0x81 (129)

... ***CONTROL*** 23:37:40:755 Eventid:10285 Disconnect Reason: path-failure
This example shows another anomaly where repeatedly after the old restart counter has reset to
2, it somehow ends up at 0 again when the path fail clears. This turned out to be a bug. Again the
lesson here is if something appears odd, it should be reported.
[XGWin]GGSN> mon sub

Monday June 22 23:34:22 UTC 2015

 y) By SGSN IP Address

 IP Address: [209.165.200.225]

INBOUND>>>>> 23:35:32:688 Eventid:47000(3)

GTPC Rx PDU, from 209.165.200.225:2123 to 209.165.202.129:2123 (176)

TEID: 0x00000000, Message type: GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10)

Sequence Number:: 0x1DB8 (7608)

...

 IMSI: 300420078559902 Recovery: 0x81 (129)

...

CONTROL 23:36:00:363 Eventid:10285

 Disconnect Reason: path-failure

INBOUND>>>>> 23:36:48:414 Eventid:47000(3)

GTPC Rx PDU, from 209.165.200.225:2123 to 209.165.202.129:2123 (176)

TEID: 0x00000000, Message type: GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10)

Sequence Number:: 0x3E2D (15917)

...

 IMSI: 300420125984926

 Recovery: 0x84 (132)

...

INBOUND>>>>> 23:37:28:337 Eventid:47000(3)

GTPC Rx PDU, from 209.165.200.225:2123 to 209.165.202.129:2123 (176)

TEID: 0x00000000, Message type: GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10)

Sequence Number:: 0x3517 (13591)

...

 IMSI: 300420094205377

 Recovery: 0x84 (132)

... Monday June 22 2015 INBOUND>>>>> 23:37:40:559 Eventid:47000(3) GTPC Rx PDU, from

209.165.200.225:2123 to 209.165.202.129:2123 (176) TEID: 0x00000000, Message type:

GTP_CREATE_PDP_CONTEXT_REQ_MSG (0x10) Sequence Number:: 0x4E47 (20039) ... IMSI: 300420194755472

Recovery: 0x81 (129)

... ***CONTROL*** 23:37:40:755 Eventid:10285 Disconnect Reason: path-failure

