
Understand and Troubleshoot Finesse BOSH 
Implementation

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Understand Finesse BOSH Implementation
Understand XMPP
Example XMPP Message
XMPP Implementation with Finesse
Example Finesse XMPP Reqeust/Response
Understand Finesse XMPP Messages and XMPP Nodes
Example 1: Use Pidgin to View Finesse XMPP Nodes
Example 2: Use Browser Developer Tools Network Tab to View HTTP Messages
Troubleshoot BOSH Disconnect Error Message
Log Analysis
Debug Notification Service Logs
Info Notification Service Logs
Webservices Logs
Common Reasons for BOSH Disconnect
Problem - Agents Disconnect at Different Times (Client Side Issue)
Recommended Actions
Problem - All Agents Disconnect at the Same Time (Server Side Issue)
Recommended Actions
Use Fiddler
Common Fiddler Issue
Example Configuration Steps
Use Wireshark
Related Defects
Related Information

Introduction

This document describes the architecture behind Finesse connections that use BOSH and how BOSH 
connection problems can be diagnosed.

Prerequisites

Requirements

  

Cisco recommends that you have knowledge of these topics:



Cisco Finesse•
Unified Contact Center Enterprise (UCCE)•
Unified Contact Center Express (UCCX)•
Web browser developer tools•
Windows and/or Mac administration•

Components Used

  

The information in this document is based on these software and hardware versions:

Cisco Finesse 9.0(1) - 11.6(1)•
UCCX 10.0(1) - 11.6(2)•

The information in this document was created from the devices in a specific lab environment. All of the 
devices used in this document started with a cleared (default) configuration. If your network is live, ensure 
that you understand the potential impact of any command.

Background Information

Connections that use Bidirectional-streams Over Synchronous HTTP are called BOSH.

Understand Finesse BOSH Implementation

Understand XMPP

Extensible Messaging and Presence Protocol (XMPP) (also known as Jabber) is a stateful protocol in a 
client-server model. XMPP allows for fast delivery of small pieces of structured eXtensible Markup 
Language (XML) data from one entity to another. XMPP/Jabber is extensively used in instant messaging 
(IM) and presence applications.

All XMPP entities are identified by their Jabber ID (JID).



JID Addressing Scheme: user@domain/resource

user client username on the XMPP server or name of the conference room

domain XMPP server fully qualified domain name (FQDN)

resource
identifier of the user's specific entity/endpoint (for example, laptop, smartphone, and so on), a 
session identifier, or pubsub node name

Note: All three JID components are not used in all cases. A server would typically just be defined by 
the domain, a conference room defined by user@domain, and a client by user@domain/resource. 

XMPP messages are called stanzas. There are three core stanzas in XMPP:

1. <message>: one direction, one recipient

2. <presence>: one direction, publish to many

3. <iq>: info/query - request/response

All stanzas have to and from addresses and most stanzas also have type, id, and xml:langattributes.

Stanza Attribute Purpose

to destination JID



from source JID

type purpose of the message

id unique identifier used to link a request with a response for <iq> stanzas

xml:lang defines the default language for any human readable XML in the stanza

Example XMPP Message

 

<message to='person1@example' from='person2@example' type='chat'> 
  <subject> Team meeting </subject> 
  <body>Hey, when is our meeting today? </body> 
  <thread>A4567423</thread> 
</message> 

 

XMPP Implementation with Finesse

If a web application needs to work with XMPP, multiple issues arise. Browsers don’t support XMPP over 
Transmission Control Protocol (TCP) natively, so all XMPP traffic must be handled by a program which 
runs inside the browser. Web servers and browsers communicate via HyperText Transfer Protocol (HTTP) 
messages, so Finesse and other web applications wrap XMPP messages inside of HTTP messages. 

The first difficulty with this approach is that HTTP is a stateless protocol. This means that each HTTP 
request is not related to any other request. However, this problem can be addressed by applicative means--
for example through the use of cookies/post data.

The second difficulty is the unidirectional behavior of HTTP. Only the client sends requests, and the server 
can only respond. The server’s inability to push data makes it unnatural to implement XMPP over HTTP.

This problem does not exist in the original XMPP Core specification (RFC 6120), where XMPP is bound to 
TCP. However, if you want to address the problem with XMPP bound to HTTP, for example, because 
Javascript can send HTTP requests, there are two possible solutions. Both require a bridge between HTTP 
and XMPP.

The proposed solutions are:

1. Polling (legacy protocol): repeated HTTP requests asking for new data defined in XEP-0025: Jabber 
HTTP Polling

2. Long polling also is known as BOSH: transport protocol that emulates the semantics of a long-lived, 
bidirectional TCP connection between two entities by efficiently using multiple synchronous HTTP 
request/response pairs without requiring the use of frequent polling defined in XEP-0124: HTTP Binding 
and extended by XEP-0206: XMPP Over BOSH

Finesse implements BOSH as it is quite efficient from the server load point of view and traffic-wise. The 
reason to use BOSH is to cover up the fact that the server does not have to respond as soon there is a 
request. The response is delayed up to a specified time until the server has data for the client, and then it is 



sent as a response. As soon as the client gets the response, the client makes a new request and so forth.

The Finesse desktop client (web application) establishes a stale BOSH connection over TCP port 7443 every 
30 seconds. After 30 seconds, if there are no updates from the Finesse Notification Service, the Notification 
service sends an HTTP reply with a 200 OK and a (nearly) empty response body. If the Notification Service 
has an update on the presence of an agent or a dialog (call) event, for example, the data is sent immediately 
to the Finesse web client.

Example Finesse XMPP Reqeust/Response

This example shows the first XMPP message request response shared between the Finesse client and Finesse 
server to set up the BOSH connection.

 

Finesse client request: 
<body xmlns="http://jabber.org/protocol/httpbind" xml:lang="en-US" xmlns:xmpp="urn:xmpp:xbosh" hold="1" ver="1.9" to="fin1.ucce.local" wait="30" xmpp:version="1.0" from="47483648@fin1.ucce.local" rid="704654808"/> 
 
Finesse server response: 
<body xmlns="http://jabber.org/protocol/httpbind" xmlns:stream="http://etherx.jabber.org/streams" authid="26779701" sid="26779701" secure="true" requests="4" inactivity="60" polling="5" wait="30" hold="1" ack="704654808" maxpause="300" ver="1.6"><stream:features><mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl"><mechanism>PLAIN</mechanism></mechanisms><compression xmlns="http://jabber.org/features/compress"><method>zlib</method></compression><bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"/><session xmlns="urn:ietf:params:xml:ns:xmpp-session"/></stream:features></body>

 

To summarize:

The Finesse web client has a stale HTTP connection (http-bind) set up to the Finesse server via TCP 
port 7443. This is known as a BOSH long poll. 
 

1. 

The Finesse Notification Service is a presence service that posts updates regarding the state of an 
agent, call, and so on. 
 

2. 

If the Notification service has an update, it replies to the http-bind request with the state update as 
an XMPP message in the HTTP response body. 
 

3. 

If there are no state updates 30 seconds after receiving the http-bind request, the Notification Service 
replies without any state updates to allow the Finesse web client to send another http-bind request. 
This serves as a way for the Notification service to know that the Finesse web client is still able to 
connect to the Notification Service and that the agent did not close their browser or put their computer 
to sleep, and so on.

4. 

Understand Finesse XMPP Messages and XMPP Nodes

Finesse also implements XMPP specification XEP-0060: Publish-Subscribe. The purpose of this 
specification is to allow the XMPP server (Notification service) to get information published to XMPP 
nodes (topics) and then to send XMPP events to entities subscribed to the node. In the case of Finesse, the 
Computer Telephony Integration (CTI) server sends CTI messages to the Finesse web service to tell Finesse 
about configuration updates such as, but not limited to, agent or Contact Service Queue (CSQ) creation or 
information about a call. This information is then converted into an XMPP message that the Finesse web 
service publishes to the Finesse Notification service. The Finesse Notification service then sends XMPP 
over BOSH messages to agents that are subscribed to certain XMPP nodes.

Some of Finesse API objects that are defined in the Finesse Web Services Developer Guide are XMPP 
nodes. Agent and supervisor Finesse web clients can subscribe to event updates for some of these XMPP 
Nodes in order to have up-to-date information about real-time events (such as call events, state events, and 
so on). This table shows the XMPP nodes that are pubsub enabled.

https://developer.cisco.com/docs/finesse/#!rest-api-dev-guide


Finesse API Object Purpose Subscription

/finesse/api/User/<LoginID>
Shows the state and team mapping of 
the agent

Agents and 
Supervisors

/finesse/api/User/<LoginID>/Dialogs Shows the call(s) handled by the agent
Agents and 
Supervisors

/finesse/api/User/<LoginID>/ClientLog
Used to capture client logs from 
the Send Error Report button

Agents and 
Supervisors

/finesse/api/User/<LoginID>/Queue/<queueID> Shows queue statistics data (if enabled)
Agents and 
Supervisors

/finesse/api/Team/<TeamID>/Users
Shows the agents that belong to a certain 
team including state information

Supervisors

/finesse/api/SystemInfo
Shows the state of the Finesse server. 
Used to determine if failover is needed

Agents and 
Supervisors

Example 1: Use Pidgin to View Finesse XMPP Nodes

Step 1. Download and install the XMPP client Pidgin.

Step 2. Navigate to Accounts > Modify > Basic and configure the Login Options:

Protocol: XMPP•
Username: LoginID for any agent•
Domain: FQDN of Finesse server•
Resource: Placeholder - any value can be used, for example, test•
Password: Agent password•
Check the Remember password checkbox•



Step 3. Navigate to Accounts > Modify > Advanced and configure:

Connection security: Use encryption if available•
Check the Allow plaintext auth other unencrypted streams.• Connection port: 5222. Use the default port 5222. This port is required for external XMPP clients. Fin

•

Connection server: Finesse server FQDN•

Note



: Port 5222 is used only because Finesse web clients can use port 7443 to connect to the Notification 
Service.

Step 4. Navigate to Tools > Plugins and enable the XMPP Console.



Step 5. Navigate to Tools > XMPP Console > XMPP Console  to open the XMPP Console.



Step 6. Execute this <iq> message to see all of the XMPP nodes that exist.

 

<iq type='get' from='<loginID>@<Finesse_FQDN>/test' to='pubsub.<Finesse_FQDN>' id='testId1' 
<query xmlns='http://jabber.org/protocol/disco#items'/> 
</iq>

 

For example:

 

<iq type='get' from='47483648@fin1.ucce.local/test' to='pubsub.fin1.ucce.local' id='testId1'> 
<query xmlns='http://jabber.org/protocol/disco#items'/> 
</iq>

 



In a lab environment with two agents and two CSQs configured, this output is contained in the Finesse 
response:

 

<iq type='result' id='testId1' from='pubsub.fin1.ucce.local' to='47483648@fin1.ucce.local/test'> 
 <query xmlns='http://jabber.org/protocol/disco#items'> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/Team/5000/Users'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483648/Dialogs'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483651'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483651/ClientLog'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483649/Queues'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/Team/5001/Users'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483650/ClientLog'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/Queue/1'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483648/ClientLog'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483648/Queues'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483650'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483650/Queues'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483651/Dialogs'/> 

http://jabber.org/protocol/disco#items


 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483648'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/Team/1/Users'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483649'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483651/Queues'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483649/ClientLog'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/Queue/0'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483649/Dialogs'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/User/47483650/Dialogs'/> 
 <item jid='pubsub.fin1.ucce.local' name='' node='/finesse/api/SystemInfo'/> 
 </query> 
</iq>

 

Example 2: Use Browser Developer Tools Network Tab to View HTTP Messages

Each browser has a set of developer tools. The Network tab of the developer tools shows the HTTP 
messages sent and received by the Finesse web client (browser). For example, this image shows how the 
Finesse web client sends a SystemInfo request which checks Finesse Tomcat status every minute as a 
failover check. Additionally, the http-bind messages from the BOSH connection are also displayed. The 
Finesse server sends back a response within 30 seconds if there are no updates to publish on the XMPP 
nodes the web client is subscribed to.

Troubleshoot BOSH Disconnect Error Message

 When a BOSH disconnect occurs, the error Lost connection to {Finesse Server FQDN}. Please wait for a 
reachable Finesse Server to be found... is displayed in a red banner at the top of the Finesse desktop.

This message is displayed because at this time, no XMPP subscription events can be received from the 
Cisco Finesse Notification Service. Hence, state information and call details cannot be displayed on the 
agent desktop.

For UCCX, 60 seconds after the browser disconnects, the agent is put into a Logout state. The agent can be 



in the Ready or Not Ready state for the logout to happen.

For UCCE, Finesse takes up to 120 seconds to detect when an agent closes the browser or the browser 
crashes and Finesse waits 60 seconds before sending a forced logout request to the CTI server which causes 
the CTI server to put the agent in a Not Ready state. Under these conditions, Finesse can take up to 180 
seconds to sign out the agent. Unlike in UCCX, the agent moves into a Not Ready state instead of the 
Logout state.

Note: The CTI disconnect Not Ready vs. Logout state behavior in UCCE is controlled by the 
PG /LOAD parameter. Per the Release Notes for Unified Contact Center Enterprise & Hosted Release 
10.0(1), the /LOAD parameter is deprecated starting in UCCE 10.0.

For more information on UCCE Finesse Desktop behavior, refer to the Desktop Behavior section of 
the Cisco Finesse Failover Mechanisms chapter in the Cisco Finesse Administration Guide.

Note: Timer values can change in the future as per the product requirement.

Log Analysis

The Finesse and UCCX Notification service logs can be collected via RTMT or via the CLI:

file get activelog /desktop recurs compress

Debug Notification Service Logs 

Note: Set debug level logs only while you reproduce an issue. Turn off the debugs after the issue has 
been reproduced.

Note: Finesse 9.0(1) does not have debug level logging. Debug level logging was introduced in 
Finesse 9.1(1). The process for enabling the logging is different in 9.1(1) compared to Finesse 10.0(1) 
- 11.6(1). For this process, consult the Finesse Administration and Serviceability guide.

Enable Notification Service debug logs of Unified Contact Center Express (UCCX), as shown:

 
<#root>

admin:

utils uccx notification-service log enable

 
 
WARNING! Enabling Cisco Unified CCX Notification Service logging can affect system performance 
and should be disabled when logging is not required. 
 
Do you want to proceed (yes/no)? yes 
 
Cisco Unified CCX Notification Service logging enabled successfully. 
 
NOTE: Logging can be disabled automatically if Cisco Unified CCX Notification Service is restarted.  

 

https://www.cisco.com/c/en/us/support/customer-collaboration/finesse/products-maintenance-guides-list.html


Enable Notification Service debug logs of Unified Contact Center Enterprise (UCCE) (Finesse Standalone), 
as shown:

 
<#root>

admin:

utils finesse notification logging enable

 
 
Checking that the Cisco Finesse Notification Service is started... 
The Cisco Finesse Notification Service is started. 
 
Cisco Finesse Notification Service logging is now enabled. 
 
WARNING! Cisco Finesse Notification Service logging can affect system performance 
and should be disabled when logging is not required. 
 
Note: Logging can be disabled automatically if you restart the Cisco Finesse Notification Service

 

These logs are in the /desktop/logs/openfire folder and are named debug.log.

As shown in the image, the Notification Service (Openfire) debug.log shows the http binding with desktop 
along with the IP address and port of the agent PC.

As shown in the image, the last active 0 ms shows that session is still active.

Openfire closing the idle session indicates the agent logout can trigger in 60 seconds where Finesse can send 
a forced logout with a reason code of 255 to the CTI server. The actual behavior of the desktop under these 
conditions depends on the setting for Logout on Agent Disconnect (LOAD) in UCCE. In UCCX, this is 
always the behavior.

 If the Fineese client does not send http-bind messages to the Finesse server, the logs can show the session 
up time and show the session close.

 

2017.06.17 00:14:34 Session (id=f382a015) was last active 0 ms ago: 1001003@xxxxx.xxxx.xxx.cisco.com/desktop 
2017.06.17 00:15:04 Session (id=f382a015) was last active 13230 ms ago: 1001003@xxxxx.xxxx.xxx.cisco.com/desktop 
2017.06.17 00:15:34 Session (id=f382a015) was last active 43230 ms ago: 1001003@xxxxx.xxxx.xxx.cisco.com/desktop 
2017.06.17 00:16:04 Session (id=f382a015) was last active 63231 ms ago: 1001003@xxxxx.xxxx.xxx.cisco.com/desktop 
  
2017.06.17 00:17:04 Unable to route packet. No session is available so store offline. <message from="pubsub. xxxxx.xxxx.xxx.cisco. com" to="1001003@xxxxx.xxxx.xxx.cisco.com.cisco.com" id="/finesse/api/User/1001003__1001003@xxxxx.xxxx.xxx.cisco.com__o5Aqb"><event xmlns="http://jabber.org/protocol/pubsub#event"><items node="/finesse/api/User/1001003"><item id="0d78a283-466d-4477-a07e-6e33a856fce388"><notification xmlns="http://jabber.org/protocol/pubsub">&lt;Update&gt 
 



 

Info Notification Service Logs

These logs are in the /desktop/logs/openfire folder and are named info.log. If the Fineese client does not 
send http-bind messages to the Finesse server, the logs can show the the session become inactive.

 

2017.06.17 00:16:04 Closing idle session (id=f382a015): 1001003@xxxxx.xxxx.xxx. cisco.com/desktop 
after inactivity for more than threshold value of 60 
2017.06.17 00:16:04 A session is closed for 1001003@xxxxx.xxxx.xxx. cisco.com/desktop

 

Webservices Logs

These logs are in the /desktop/logs/webservices folder and are named Desktop-webservices.YYYY-MM-
DDTHH-MM-SS.sss.log. If the Fineese client does not send http-bind messages to the Finesse server within 
the specified amount of time, the logs can show the the agent presense become unavailable and 60 seconds 
later, a presense driven logout can occur.

 

0000001043: XX.XX.XX.XXX: Jun 17 2017 00:16:04.630 +0530: %CCBU_Smack Listener Processor (1)-6-PRESENCE_NOTIFICATION_RECIEVED: %[FROM JID=1001003@xxxxx.xxxx.xxx.cisco.com/desktop][PRESENCE_TYPE=unavailable]:Finesse received a presence notifcation 
0000000417: XX.XX.XX.XXX: Jun 17 2017 00:16:04.631 +0530: %CCBU_Smack Listener Processor (1)-6-UNSUBSCRIBE_REQUEST_SUCCESS: %[NodeId=/finesse/api/User/1001003/ClientLog][user_id=1001003@xxxxx.xxxx.xxx.cisco.com]: Sucessfully unsubscribed from a node on the XMPP server 
0000001044: XX.XX.XX.XXX:  Jun 17 2017 00:16:04.631 +0530: %CCBU_Smack Listener Processor (1)-6-AGENT_PRESENCE_MONITOR: %[message_string=Adding agent 1001003 into the expiry hash.]:  
0000001051: XX.XX.XX.XXX:  Jun 17 2017 00:16:35.384 +0530: %CCBU_pool-8-thread-1-6-AGENT_PRESENCE_MONITOR: %[message_string=[Expired] Removed agent from cache 1001003]:  
0000001060: XX.XX.XX.XXX:: Jun 17 2017 00:17:04.632 +0530: %CCBU_CoreImpl-worker12-6-PRESENCE DRIVEN LOGOUT: %[agent_id=1001003]: Performing CTI Logout on basis of the agents unavailable presence 
0000001061: XX.XX.XX.XXX:: Jun 17 2017 00:17:04.633 +0530: %CCBU_CoreImpl-worker12-6-MESSAGE_TO_CTI_SERVER: %[cti_message=Invoke id :39 , agentstate : 
1, workmode : 0, reason code: 255, forceflag :1, agentcapacity: 1, agentext: 1001003, agentid: 1001003, supervisorid: null, ssoFlag=false][cti_message_name=SetAgentStateReq]: Message going to the backend cti server 
0000001066:  XX.XX.XX.XXX:: Jun 17 2017 00:17:04.643 +0530: %CCBU_CTIMessageEventExecutor-0-6-DECODED_MESSAGE_FROM_CTI_SERVER: %[cti_message=CTIAgentStateEvent [skillGroupState=1 (LOGOUT), stateDuration=0, 
skillGroupNumber=-1, skillGroupPriority=0, agentState=1 (LOGOUT), eventReasonCode=255, numFltSkillGroups=0, CTIClientSignature=null, agentID=1001003, agentExtension=1001003, agentInstrument=null, agentID_Long=1001003, 
duration=null, nextAgentState=null, fltSkillGroupNumberList=[], fltSkillGroupIDList=[], fltSkillGroupPriorityList=[], fltSkillGroupStateList=[], MRDId=1, agentMode=0]CTIMessageBean [invokeID=null, cti_sequence_id=105, 
msgID=30, timeTracker={"id":"AgentStateEvent","CTI_MSG_RECEIVED":1497638824642,"CTI_MSG_DISPATCH":1497638824643}, msgName=AgentStateEvent, deploymentType=CCX]][cti_response_time=1][dispatch_phase=DnD-CHECKPOINT-3B]: 
Decoded Message to Finesse from backend cti server

 

Common Reasons for BOSH Disconnect 

 BOSH connections are setup by the web client, and the Finesse server determines if the agent presence is 
unavailable. These issues are almost always client side issues relating to the browser, agent computer, or 
network as the onus of starting up the connection is up to the client.

Problem -  Agents Disconnect at Different Times (Client Side Issue)

Recommended Actions 

Check for these issues:

1. Network issue:

Review firewall rules and logs -- TCP port 7443 must not be blocked or throttled•

Use an HTTP web traffic sniffer like Fiddler® or Wireshark® to confirm that the browser sends http-
bind requests over TCP port 7443 and receives responses

•

https://www.telerik.com/download/fiddler
https://www.telerik.com/download/fiddler
https://www.wireshark.org/download.html
https://www.wireshark.org/download.html


Check all network devices/interfaces between the agent computer and the Finesse server for excessive 
delay or packet drops

Traceroute can be useful to determine the path and determine delays
On a Microsoft® Windows® PC: tracert {Finesse Server IP | Finesse Server FQDN}○

On a Mac®: traceroute {Finesse Sever IP | Finesse Server FQDN}○

On Cisco IOS® software, the interface statistics can be checked: show interfaces 
Refer Troubleshooting Input Queue Drops and Output Queue Drops○

○

○

•

Collect Finesse Client logs for a test agent. Client logs can be collected in three ways:
Browser web console logs

Firefox Web Console○

Microsoft Edge Web Console○

Chrome Web Console○

1. 

Press the Send Error Report button on the Finesse page and collect the Finesse server logs. The 
logs are located in /desktop/logs/clientlogs.

2. 

Log in via https://<Finesse-FQDN>/desktop/locallog and collect the logs after the issue occurs.3. 

•

Every minute, the client connects to the Finesse server to calculate drift and network latency:

 

<PC date-time with GMT offset>: : <Finesse FQDN>: <Finesse server date-time with offset>: 
Header : Client: <date-time>, Server: <date-time>, Drift: <drift> ms, Network Latency (round trip): <RTT> ms 
 
2019-01-11T12:24:14.586 -05:00: : fin1.ucce.local: Jan 11 2019 11:24:14.577 -0600: Header : Client: 2019-01-1

 

In case of any log collection issues, refer to Troubleshoot Cisco Finesse Desktop Persistent Logging 
Problem 

2. Unsupported browser and/or version:

Use supported browser/version and settings as per the compatibility matrices: 

UCCE Compatibility Matrix

UCCX Compatibility Matrix

3. Browser stuck condition due to content/processing of other tab/window:

Check the agent workflow to see if they:

Commonly have other tabs or windows up that are constantly running other real-time applications 
such as music/video streaming, WebSocket connections, custom Customer Relationship Management 
(CRM) web clients, etc

•

Have a very large number of tabs or windows open•
Have disabled browser caching•
Have kept their browser running for a long time and do not close the browser at the end of the 
workday

•

4. Computer put to sleep:

Check to see if the agent puts their computer to sleep before logging out of Finesse or if their computer sleep 
setting timer is very low.

5. High CPU or high memory issue on client computer:

https://www.cisco.com/c/en/us/support/routers/800-series-routers/products-tech-notes-list.html
https://firefox-source-docs.mozilla.org/devtools-user/web_console/index.html
https://learn.microsoft.com/en-us/archive/microsoft-edge/legacy/developer/
https://developer.chrome.com/docs/devtools/
https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cust_contact/contact_center/finesse/finesse_1161/user/guide/cfin_b_cisco-finesse-desktop-user-guide-1161/cfin_b_cisco-finesse-desktop-user-guide-1161_chapter_0101.html?bookSearch=true
https://www.cisco.com/c/en/us/support/docs/customer-collaboration/finesse/212634-troubleshoot-cisco-finesse-desktop-persi.html
https://www.cisco.com/c/en/us/support/docs/customer-collaboration/finesse/212634-troubleshoot-cisco-finesse-desktop-persi.html
https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-enterprise/products-device-support-tables-list.html
https://www.cisco.com/c/en/us/support/customer-collaboration/unified-contact-center-express/products-device-support-tables-list.html


If the agent browser runs in a shared environment such as Microsoft Windows Remote Desktop 
Services, Citrix® XenApp®, Citrix XenDesktop®, determine if the browser performance depends on 
the number of users running the browser at the same time

Ensure that the proper memory and CPU resources is configured based on the number of users○

•

Check computer resource utilization issues: 
Windows:

Windows PowerShell  Get-Counter command that checks % of CPU time, Megabytes of 
memory available, and % of memory in use every 2 seconds: Get-Counter -Counter 
"\Processor(_Total)\% Processor Time","\Memory\Available MBytes","\Memory\% 
Committed Bytes In Use" -SampleInterval 2 -Continuous

○

Alternative to using PowerShell to view the Windows' performance counters, Windows 
Perfomance Monitor can be used

○

Task Manager can be used to view live CPU and memory statistics globally and on a 
process-by-process basis

○

○

Mac:
Terminal  Top command that checks live total CPU and memory: top

Check processes and sort by CPU utilization: top -o CPU○

Check processes and sort by memory utilization: top -o MEM○

○

Activity Monitor can be used to view live CPU and memory statistics globally and on a 
process-by-process basis

○

○

•

6. 3rd party gadgets performing unexpected, problematic activity in background:

Test the Finesse desktop behavior with all 3rd party gadgets removed.

7. NTP issue on server or client:

Check utils ntp status on the Finesse publisher server to ensure the NTP server stratum is 4 or lower•
In the client logs, check drift and network latency•

Problem - All Agents Disconnect at the Same Time (Server Side Issue)

Recommended Actions 

Check for these issues:

1. Cisco Unified Communications Manager CTIManager service disconnect. If all CTIManager providers 
for UCCX are shutdown or crash, UCCX agents see the red banner error. UCCE agents do not see the red 
banner if this happens, but calls fail to route propertly to the agents.

Check to see if the Cisco CTIManager service is started on the CUCM servers used as CTI providers•
Check to see if the Cisco CTIManager service crashed via the Event Viewer - Application logs on 
RTMT to see if the Cisco CTIManager service crashed

To collect event viewer logs on RTMT, navigte to System > Tools > Trace and Log Central > 
Collect Files > Select System Services/Applications > Event Viewer-Application Log.

○

•

https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/starting-windows-powershell?view=powershell-7.3&viewFallbackFrom=powershell-6
http://%20https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.diagnostics/get-counter?view=powershell-5.1
https://techcommunity.microsoft.com:443/t5/ask-the-performance-team/bg-p/AskPerf
https://techcommunity.microsoft.com:443/t5/ask-the-performance-team/bg-p/AskPerf
https://techcommunity.microsoft.com:443/t5/ask-the-performance-team/bg-p/AskPerf
https://support.apple.com/guide/terminal/welcome/mac
https://ss64.com/osx/top.html
https://support.apple.com/guide/activity-monitor/welcome/mac


To collect the Event Viewer-Application logs on CLI: file get activelog /syslog/CiscoSyslog* abstime 
hh:mm:MM/DD/YY hh:mm:MM/DD/YY

•

To view core dumps on the CLI: utils core active list•

Note: Core dumps file names use the 
format: core.<ProcessID>.<SignalNumber>.<ProcessName>.<EpochTime>.  
Example: core.24587.6.CTIManager.1533441238 
Hence, the time of the crash can be determined from the epoch time.

2. Finesse/UCCX Notification Service stopped or crashed:

Check the Event Viewer-Application Logs for Notification Service errors or to see if the service was 
stopped

•

Check to see if the Notification service is up: utils service list•
Check the times the Notification service shut down: file search activelog /desktop/logs/openfire 
"Openfire stopped"

•

Check the times the Notification service started: file search activelog /desktop/logs/openfire "HTTP 
bind service started"

•

Check for Notification service memory dumps that resulted from a crash: file list activelog 
/desktop/logs/openfire/*.hprof

•

Check to see if the Notification service is listening for traffic on TCP port 7443: show open ports 
regexp 7443.*LISTEN

•

Check to see if these defects are applicable (these defects would cause login failure for agents logging 
in and for agents already logged in, those agents would see the red banner Finesse disconnect 
message):

Cisco bug ID CSCva72280  - Finesse Tomcat and Openfire Crash for invalid XML characters○

•

https://tools.cisco.com/bugsearch/bug/CSCva72280


Cisco bug ID CSCva72325 - UCCX: Finesse Tomcat and Openfire Crash for invalid XML 
characters 

○

Restart Cisco Finesse Tomcat and Notification Service if a crash is suspected. This is only recommended in 
a network down situation, otherwise, these restarts disconnect agents from the Finesse server.

Steps for UCCE:

utils service stop Cisco Finesse Tomcat•
utils service stop Cisco Finesse Notification Service•
utils service start Cisco Finesse Tomcat•
utils service start Cisco Finesse Notification Service•

Steps for UCCX:

utils service stop Cisco Finesse Tomcat•
utils service stop Cisco Unified CCX Notification Service•
utils service start Cisco Finesse Tomcat•
utils service start Cisco Unified CCX Notification Service•

Use Fiddler

Configuring Fiddler can be a somewhat challenging task without understanding the steps needed and 
understanding how Fiddler works. Fiddler is a man-in-the-middle web proxy that stands between the Finesse 
client (web browser) and the Finesse server. Due to the connections secured between the Finesse client and 
Finesse server, this adds a layer of complexity to the Fiddler configuration in order to view secured 
messages.

Common Fiddler Issue

Since Fiddler stands in between the Finesse client and Finesse server, the Fiddler application needs to create 
signed certificates for all Finesse TCP ports that require certificates:

Cisco Finesse Tomcat service certificates

Finesse publisher server TCP 8445 (and/or 443 for UCCE)1. 
Finesse subscriber server TCP 8445 (and/or 443 for UCCE)2. 

Cisco Finesse (Unified CCX) Notification Service certificates

Finesse publisher server TCP 74431. 
Finesse subscriber server TCP 74432. 

HTTPS decryption must be enabled for Fiddler to dynamically generate certificates on behalf of the Finesse 
server. This is not enabled by default.

If HTTPS decryption is not configured, the initial tunnel connection to the Notification service is seen, but 
the http-bind traffic is not. Fiddler only shows:

 

Tunnel to <Finesse server FQDN>:7443

 

https://tools.cisco.com/bugsearch/bug/CSCva72325


Then, the Finesse certificates signed by Fiddler must be trusted by the client. If these certificates are not 
trusted, moving past the Establishing encrypted connection... stage of Finesse login is not possible.

In some cases, accepting the certificate exceptions from the login does not work, and the certificates need to 
be trusted by the browser manually. 

Example Configuration Steps

Caution: The example configuration provided is for Fiddler v5.0.20182.28034 for .NET 4.5and 
Mozilla Firefox 64.0.2 (32-bit) on Windows 7 x64 in a lab environment. These procedures can not 
generalize to all versions of Fiddler, all browsers, or all computer operating systems.  If your network 
is live, ensure that you understand the potential impact of any configuration. Reference the official 
Fiddler documentation for more information. 

Step 1. Download Fiddler

Step 2. Enable HTTPS decryption. Navigate to Tools > Options > HTTPS and check the Decrypt HTTPS 
traffic checkbox.

https://docs.telerik.com/fiddler/configure-fiddler/tasks/configurefiddler
https://docs.telerik.com/fiddler/configure-fiddler/tasks/configurefiddler


Step 3. A warning message box opens to ask to trust the Fiddler Root Certificate. Select Yes.

Step 4. A warning message box opens with the message "You are about to install a certificate from a 
certification authority (CA) claiming to represent: DO_NOT_TRUST_FiddlerRoot... Do you want to install 
this certificate?". Select Yes.

Step 5. Manually add the Finesse publisher and subscriber certificates to the computer or browser certificate 
trust store. Ensure ports 8445, 7443, and (only for UCCE) 443. For example, on Firefox, this can be done 
simply without downloading certificates from the Finesse Operating System Administration page:

Options > Find in Options (search) > Certificates > Servers > Add Exception > Location > Enter 
https://<Finesse server>:port for the relevant ports for both Finesse servers.



Step 6. Log into Finesse and see the http-bind messages leave the Finesse client to the Finesse Server via 
Fiddler. 

In the example provided, the first 5 messages show http-bind messages that were responded to by the 
Finesse server. The first message contains 1571 bytes of data returned in the message body. The body 
contains an XMPP update regarding an agent event. The final http-bind message has been sent by the 
Finesse client, but has not gotten a response from the Finesse server. This can be determined when 
you see that the HTTP result is null (-) and the number of bytes in the response body is null (-1).

  



Closer view of the data:

Response body for XMPP message:



Use Wireshark

Wireshark is a commonly used packet sniffing tool that can be used to sniff and decode HTTPS traffic. 
HTTPS traffic is HTTP traffic secured over Transport Layer Security (TLS). TLS provides integrity, 
authentication and confidentiality between to hosts. It is used commonly in web applications, but it can be 
used with any protocol that uses TCP as the transport layer protocol. Secure Sockets Layer (SSL) is the 
former version of the TLS protocol, which is no longer used as it is insecure. These names are often used 
interchangeably, and the Wireshark filter used for SSL or TLS traffic is ssl.

Caution: The example configuration provided is for Wireshark 2.6.6 (v2.6.6-0-gdf942cd8)and 
Mozilla Firefox 64.0.2 (32-bit) on Windows7 x64 in a lab environment. These procedures cannot 
generalize to all versions of Fiddler, all browsers, or all computer operating systems. If your network 
is live, ensure that you understand the potential impact of any configuration. Reference the Official 
Wireshark SSL documentation for more information. Wireshark 1.6 or greater is required.

Note: This method can only work for Firefox and Chrome. This method does not work for Microsoft 
Edge.

Step 1. On the agent's Windows PC navigate to Control Panel > System and Security > System > 
Advanced system settings Environmental Variables...

https://wiki.wireshark.org/SSL
https://wiki.wireshark.org/SSL


Step 2. Navigate to User variables for user <username> > New...

Create a variable named SSLKEYLOGFILE.

Create a file to store the SSL premaster secret in a private 
directory: SSLKEYLOGFILE=</path/to/private/directory/with/logfile>



Note: Create a system variable instead of a user variable and/or store the file in a non-private 
directory, but then all users on the system can access the premaster secret, which is less secure.

Step 3. If Firefox or Chrome are open, close the applications. After they are reopened, they can start writing 
to the SSLKEYLOGFILE.

Step 4. On Wireshark, navigate to Edit > Preferences...



Navigate to Protocols > SSL.

Step 5. Enter the location of the premaster secret log filename configured in Step 2.

Step 6. Use Wireshark filter tcp.port==7443 && 
ssl



, the secured HTTP communication between the Finesse client and Finesse server (Notification Service) is 
seen decrypted.

Related Defects

Cisco bug ID CSCva72280 - Finesse Tomcat and Openfire Crash for invalid XML characters •
Cisco bug ID CSCva72325 - UCCX: Finesse Tomcat and Openfire Crash for invalid XML characters •

Related Information

XMPP Specifications•
XEP-0124: BOSH•
XEP-0060: Publish-Subscribe•
Firefox Web Console•
Microsoft Edge Web Console•
Chrome Web Console•
Windows PowerShell  •
Windows Perfomance Monitor•
Troubleshooting Input Queue Drops and Output Queue Drops•
Windows Task Manager•
Mac Terminal•
Mac Activity Monitor•
Fiddler Download•
Fiddler Configuration•
Wireshark Download•
Wireshark SSL Decryption•
Technical Support & Documentation - Cisco Systems•

https://tools.cisco.com/bugsearch/bug/CSCva72280
https://tools.cisco.com/bugsearch/bug/CSCva72325
https://xmpp.org/extensions/
https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0060.html
https://firefox-source-docs.mozilla.org/devtools-user/web_console/index.html
https://learn.microsoft.com/en-us/archive/microsoft-edge/legacy/developer/
https://developer.chrome.com/docs/devtools/
https://learn.microsoft.com/en-us/powershell/scripting/windows-powershell/starting-windows-powershell?view=powershell-7.3&viewFallbackFrom=powershell-6
https://techcommunity.microsoft.com:443/t5/ask-the-performance-team/bg-p/AskPerf
https://www.cisco.com/c/en/us/support/routers/800-series-routers/products-tech-notes-list.html
https://techcommunity.microsoft.com:443/t5/ask-the-performance-team/bg-p/AskPerf
https://support.apple.com/guide/terminal/welcome/mac
https://support.apple.com/guide/activity-monitor/welcome/mac
https://www.telerik.com/download/fiddler
https://docs.telerik.com/fiddler/configure-fiddler/tasks/configurefiddler
https://www.wireshark.org/download.html
https://wiki.wireshark.org/SSL
https://www.cisco.com/c/en/us/support/index.html?referring_site=bodynav

