Fehlerbehebung bei Problemen mit der netzwerkbezogenen Audiofunktion von Catalyst Switches der Serie 9000

Inhalt

Einleitung Anforderungen Verwendete Komponenten Hintergrundinformationen Netzwerkdiagramm Erfassungsanalyse Fehlerbehebung Choppy Audio Einweg-Audio Zugehörige Informationen

Einleitung

In diesem Dokument wird die Behebung von Audioproblemen im Netzwerk in einer VoIP-Umgebung (Voice over IP) beschrieben.

Anforderungen

Cisco empfiehlt, dass Sie über Kenntnisse in folgenden Bereichen verfügen:

- QoS
- VoIP-Netzwerke
- SPAN (SwitchPort Analyzer)
- Wireshark

Verwendete Komponenten

Die Informationen in diesem Dokument basierend auf folgenden Software- und Hardware-Versionen:

- Catalyst 9200
- Catalyst 9300
- Catalyst 9400
- Catalyst 9500
- Catalyst 9600

Die Informationen in diesem Dokument beziehen sich auf Geräte in einer speziell eingerichteten Testumgebung. Alle Geräte, die in diesem Dokument benutzt wurden, begannen mit einer gelöschten (Nichterfüllungs) Konfiguration. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die möglichen Auswirkungen aller Befehle kennen.

Hintergrundinformationen

In einer VoIP-Infrastruktur kann sich die Qualität der Audioverbindung durch netzwerkbezogene Probleme verschlechtern, die u. a. folgende Symptome aufweisen:

- Unterbrechungsfreie Lücken in der Stimme oder abgehacktes Audio.
- Unidirektionales Audio.
- Sie ist nicht auf einen einzelnen Benutzer beschränkt, sondern auf eine Benutzergruppe mit gemeinsamen Merkmalen, z. B. gemeinsame Nutzung desselben VLAN oder gemeinsamer Nutzung desselben Access Switches.

Zur Behebung von Netzwerkproblemen ist eine klare Topologie der Sprachpakete von der Quelle bis zum Ziel erforderlich. Die Diagnose des Problems kann an jedem Punkt im Netzwerk beginnen, an dem Sprachpakete weitergeleitet oder weitergeleitet werden. Es wird jedoch empfohlen, die Fehlerbehebung auf dem Access Layer zu starten und zum Routing Layer zu wechseln.

Netzwerkdiagramm

Wählen Sie einen Erfassungspunkt im Pfad aus. Es kann sich um A (am nächsten an einem IP-Telefon), B (vor dem Routing) oder C (am nächsten am Ziel) handeln.

Die SPAN-Erfassung wird in der Regel in beide Richtungen (TX und RX) durchgeführt, um beide Seiten der Konversation zu identifizieren und die jeweiligen Audiodaten zusammen mit anderen Variablen wie Jitter oder Paketverlust aus der Erfassung zur weiteren Analyse zu extrahieren.

Nachdem der Erfassungspunkt ermittelt wurde, richten Sie die SPAN-Konfiguration auf dem Switch ein.

```
<#root>
Switch(config)#
monitor session 1 source interface Gig1/0/1 both
Switch(config)#
monitor session 1 destination interface Gig1/0/6 encapsulation replicate
Switch#
show monitor session all
Session 1
```

```
Type : Local Session
Source Ports :
Both : Gi1/0/1
Destination Ports : Gi1/0/6
Encapsulation : Replicate
Ingress : Disabled
```

Initiieren Sie einen Testanruf, um den Audiofluss vom ausgewählten Erfassungspunkt in einem PC/Laptop mit Wireshark zu erfassen.

Erfassungsanalyse

1. Öffnen Sie die mit Wireshark erfasste Paketerfassung, und navigieren Sie zu **Statistics > Conversations**. Finden Sie die Audioverbindung basierend auf der IP-Adresse der beteiligten Geräte (IP-Telefonquelle und - ziel).

w	Go	Capture	Analyze	Statistics	Telephony	Wireless	Tools	Help			
				Capture File	e Properties		\ C & # C		🚄 Testli	PPhoneGi302	5.pcap
		Sourc	e	Resolved A	ddresses			ificat	ion	Protocol	Frame leng
17	:30:	5 10.2	01.38.14	Protocol Hi	erarchy			a10	(31248)	UDP	21
17	:30:	5 10.2	01.38.14	Conversatio	ons			a1b	(31259)	UDP	21
17	:30:	5 10.2	01.38.14	Endpoints				a24	(31268)	UDP	21
17	:30:	5 10.2	01.38.14	Packet Len	gths			a38	(31288)	UDP	21
17	:30:	5 10.2	01.38.14	I/O Graphs				a49	(31305)	UDP	21
17	:30:	5 10.2	01.38.14	Service Res	nonse Time		,	a57	(31319)	UDP	21
17	:30:	5 10.2	01.38.14	Service Rea	sponse mile			a58	(31320)	UDP	21
17	:30:	5 10.2	01.38.14	DHCP (BOO	OTP) Statistics	5		a61	(31329)	UDP	21
17	:30:	5 10.2	01.38.14	NetPerfMet	er Statistics			a65	(31333)	UDP	21
17	:30:	5 10.2	01.38.14	ONC-RPC	Programs			a77	(31351)	UDP	21
17	:30:	5 10.2	01.38.14	29West			>	a8b	(31371)	UDP	21
17	. 20.	E 10 0	A1 30 1.	2011000				-04	(21200)		21

2. Normalerweise werden Audio-Streams durch das UDP-Protokoll übertragen, und meistens werden sie nicht im richtigen Format decodiert, damit Wireshark die in sie eingebetteten Audiodaten extrahieren kann. Anschließend wird der UDP-Stream im Audioformat decodiert. Standardmäßig wird RTP verwendet. Klicken Sie mit der rechten Maustaste auf ein beliebiges Paket des Streams, und klicken Sie dann auf **Decode als**.

	1 🔳 🙇 🤇	۲		2 🗴	۹ 🔶 🏓	2 🐔 👱 🗔 📃	e, e, e, 🏢	
	ip.addr==10.201.	38.140 && i	p.addr==2	39.0.1.11				
No).	Arrival Tim	e		Source	Destination	Identification	Proto
Г	29	Feb 21,	2023	17:30:5	10.201.38.14	0 239.0.1.11	0x7a10 (31248)	UDP
	32 34	Feb 21, Feb 21,	2023 (2023 (17:30:5 17:30:5	10.201.38.14	0 239.0.1.11 0 239.0.1.11	Mark/Unmark Packet Ignore/Unignore Packet	HM P HD P
	38 39	Feb 21, Feb 21,	2023 1 2023 1	17:30:5 17:30:5	10.201.38.14	0 239.0.1.11 0 239.0.1.11	Set/Unset Time Reference Time Shift Packet Comments	4 T¥ 0-₩1 0-₩1
	40 41 42	Feb 21, Feb 21,	2023	17:30:5 17:30:5	10.201.38.14	0 239.0.1.11 0 239.0.1.11	Edit Resolved Name	2
	42 43 48	Feb 21, Feb 21,	2023 2023 2023	17:30:5 17:30:5	10.201.38.14	0 239.0.1.11 0 239.0.1.11 0 239.0.1.11	Apply as Filter Prepare as Filter	•
	51	Feb 21, Feb 21,	2023 1 2023 1	17:30:5 17:30:5	10.201.38.14	0 239.0.1.11 0 239.0.1.11	Conversation Filter Colorize Conversation SCTP	
	53 54	Feb 21, Feb 21,	2023 3 2023 3	17:30:5 17:30:5	10.201.38.14	0 239.0.1.11 0 239.0.1.11	Follow	•
	55	Feb 21,	2023	17:30:5 17:30:5	10.201.38.14	0 239.0.1.11 0 239.0.1.11	Copy Protocol Proferences	
	57	Feb 21,	2023	17:30:5	10.201.38.14	0 239.0.1.11	Decode As	
	58	Feb 21,	2023	17:30:5	10.201.38.14	239.0.1.11	Show Packet in New Window	<i>"</i>

3. Suchen Sie nach der Spalte "Aktuell", und wählen Sie RTP aus. Klicken Sie auf OK.

•					Wireshark · Decode As
	Field	Value	Туре	Default	t Current
	UDP port	20764	Integer, base 10	(none)) RTP
	+ -	ъ	5		/Users/lariasca/.config/wireshark/decode_as_entries
	Help	Сору	from		Save Cancel OK

Wireshark decodiert den gesamten UDP-Stream in RTP und wir können nun den Inhalt analysieren.

		2	۲			3 🗙	٩	۰	۲	۲	٠	≛			Ð,	Q,		**					
l ip.	addr==	10.201	38.140) && ip	.addr=:	239.0.1.11																	
No.			Arriva	al Time)		Sou	rce					Destina	ation		lo	dentifica	ition	Protocol	Frame length	Info		
F		29	Feb	21,	2023	17:30:5.	. 10.	201.	38.1	40			239.0	0.1.11		6	x7a10	(31248)	RTP	218	PT=ITU-T	G.711	PCMU
		32	Feb	21,	2023	17:30:5.	. 10.	201.	38.1	40			239.0	0.1.11		6	x7a1b	(31259)	RTP	218	PT=ITU-T	G.711	PCMU
		34	Feb	21,	2023	17:30:5.	. 10.	201.	38.1	40			239.0	0.1.11		6	x7a24	(31268)	RTP	218	PT=ITU-T	G.711	PCMU
		38	Feb	21,	2023	17:30:5.	. 10.	201.	38.1	40			239.0	0.1.11		6	x7a38	(31288)	RTP	218	PT=ITU-T	G.711	PCMU
		39	Feb	21,	2023	17:30:5.	. 10.	201.	38.1	40			239.0	0.1.11		6	x7a49	(31305)	RTP	218	PT=ITU-T	G.711	PCMU
		40	Feb	21,	2023	17:30:5.	. 10.	201.	38.1	40			239.0	0.1.11		6	x7a57	(31319)	RTP	218	PT=ITU-T	G.711	PCMU
		41	Feb	21,	2023	17:30:5.	. 10.	201.	38.1	40			239.0	0.1.11		6	x7a58	(31320)	RTP	218	PT=ITU-T	G.711	PCMU
		42	Feb	21,	2023	17:30:5.	. 10.	201.	38.1	40			239.0	0.1.11		6	x7a61	(31329)	RTP	218	PT=ITU-T	G.711	PCMU
		43	Feb	21,	2023	17:30:5.	. 10.	201.	38.1	40			239.0	0.1.11		6	x7a65	(31333)	RTP	218	PT=ITU-T	G.711	PCMU
		48	Feb	21,	2023	17:30:5.	. 10	201.	38.1	40			239.0	0.1.11		6	x7a77	(31351)	RTP	218	PT=ITU-T	G.711	PCMU

Achtung: Der RTP-Player kann jeden Codec wiedergeben, der von einem installierten Plugin unterstützt wird. Die von RTP Player unterstützten Codecs hängen von der Version von Wireshark ab, die Sie verwenden. Die offiziellen Builds enthalten alle Plugins, die von den Wireshark-Entwicklern gepflegt werden, aber Custom/Distribution-Builds enthalten einige dieser Codecs nicht. Um die von Wireshark installierten Codec-Plugins zu überprüfen, gehen Sie wie folgt vor: Öffnen Sie Hilfe > Info zu Wireshark. Wählen Sie die Registerkarte Plugins. Wählen Sie im Menü Nach Typ filtern die Option Codec aus.

4. Überprüfen Sie die RTP-Statistiken, um festzustellen, ob der Audio-Stream Jitter oder Verlust aufweist. Um die Analyse anzuzeigen, navigieren Sie zu **Telefonie** > **RTP** > **RTP** Stream Analysis (Telefonie > **RTP** > **RTP-Stream-Analyse**).

ture	Analyze	Statistics	Telephony	Wireless	Tools	Help					٠	
			VoIP Calls				📕 TestlF	PhoneGi302	5.pcap			
Sourc	e		ANSI		>	Intificat	ion	Protocol	Frame length	Info		
10.2	01.38.14	10	GSM		>	:7a10	(31248)	RTP	218	PT=ITU-T	G.711	P
10.2	01.38.14	10	IAX2 Stream	n Analysis		7a1b	(31259)	RTP	218	PT=ITU-T	G.711	P
10.2	01.38.14	10	ISUP Messa	ges		:7a24	(31268)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	LTE		>	:7a38	(31288)	RTP	218	PT=ITU-T	G.711	P
10.2	01.38.14	10	MTP3		>	:7a49	(31305)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	Osmux		>	:7a57	(31319)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	RTP		>	RTPS	streams	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	PTSP				tream Analysi	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	SCTD		(DTD	Novor	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	SUIP Or or			RIPP	layer	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	SMPP Opera	ations		:7a8b	(31371)	RTP	218	PT=ITU-T	G.711	. P
10.2	201.38.14	10	UCP Messa	ges		:7a94	(31380)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	F1AP			:7aa8	(31400)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	NGAP			:7ab9	(31417)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	H.225			:7abd	(31421)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	SIP Flows			:7ac9	(31433)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	SIP Statistic	s		:7acf	(31439)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	WAP-WSP F	acket Coun	ter	:7ad2	(31442)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10			-	27ae3	(31459)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	239.0.	1.11	0	x7ae6	(31462)	RTP	218	PT=ITU-T	G.711	. P
10.2	01.38.14	10	239.0.	1.11	0	x7af3	(31475)	RTP	218	PT=ITU-T	G.711	. P

Stream		Packet ^	Sequence	Delta (ms)	Jitter (ms)	Skew	Bandwidth	Marker Status	
10 001 00 14	0.00764	29	10053	0.000000	0.000000	0.000000	1.60	~	
220 0 1 11 20	0-20/04 7	32	10054	20.234000	0.014625	-0.234000	3.20	~	
239.0.1.11.20	/04	34	10055	19.451000	0.048023	0.315000	4.80	~	
SSRC	0x695712bb	38	10056	20.237000	0.059834	0.078000	6.40	~	
Max Delta	25.304000 ms @ 141	39	10057	20.218000	0.069720	-0.140000	8.00	~	
Max Jitter	1.826388 ms	40	10058	20.052000	0.068612	-0.192000	9.60	~	
Mean Jitter	0.298929 ms	41	10059	20.054000	0.067699	-0.246000	11.20	~	
Max Skew	26.911000 ms	42	10060	19.202000	0.113343	0.552000	12.80	~	
RTP Packets	s 735	43	10061	20.073000	0.110821	0.479000	14.40	~	
Expected	735	48	10062	20.053000	0.107208	0.426000	16.00	~	
Lost	0 (0.00 %)	51	10063	20.194000	0.112632	0.232000	17.60	~	
Seq Errs	0	52	10064	20.111000	0.112530	0.121000	19.20	~	
Start at	10.728624 s @ 29	53	10065	20.090000	0.111122	0.031000	20.80	~	
Duration	14.69 s	54	10066	20.155000	0.113864	-0.124000	22.40	~	
Clock Drift	18 ms	55	10067	20.014000	0.107623	-0.138000	24.00	~	
Freq Drift	8019 Hz (0.12 %)	56	10068	19.925000	0.105584	-0.063000	25.60	~	
		57	10069	20.093000	0.104797	-0.156000	27.20	~	
		58	10070	19.157000	0.150935	0.687000	28.80	~	
		59	10071	20.060000	0.145252	0.627000	30.40	~	
		60	10072	20.099000	0.142361	0.528000	32.00	~	
		61	10073	20.103000	0.139901	0.425000	33.60	~	
		62	10074	20.098000	0.137282	0.327000	35.20	~	
		63	10075	20.073000	0.133264	0.254000	36.80	~	
		64	10076	40.357000	0.147248	-0.103000	38.40	• ✓	

× Stream 0 × Graph

Jitter: Die Zeitverzögerung beim Senden der Sprachpakete über das Netzwerk. Dies wird häufig durch Netzwerküberlastungen oder Routenänderungen verursacht. Diese Messung muss < 30 ms betragen.

Lost (Verloren): Pakete, die nicht als Teil des Audio-Streams empfangen wurden Der Paketverlust darf maximal 1 % betragen.

5. Konvertieren Sie die Audio-Welle aus diesem Stream in Telefonie > RTP > RTP-Streams

File Edit View Go Capture Analyze Statistics	Telephony Wireless Tools	s Help	
	VoIP Calls	TestIPP	honeGi3025.pcap
Arrival Time Source	ANSI	> Intification	Protocol Frame length Info
Feb 21, 2023 17:30:5 10.201.38.140	GSM	> :7a10 (31248)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	IAX2 Stream Analysis	:7a1b (31259)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	ISUP Messages	:7a24 (31268)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	LTE	> :7a38 (31288)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	МТРЗ	, :7a49 (31305)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	Osmux	;7a57 (31319)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	RTP	PTP Streams	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	DTED	DTD Stream Analysis	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	RISP	PTP Diream Analysis	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	SCIP	> RTP Player	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	SMPP Operations	:7a8b (31371)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	UCP Messages	:7a94 (31380)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	F1AP	:7aa8 (31400)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	NGAP	:7ab9 (31417)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	H.225	:7abd (31421)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	SIP Flows	:7ac9 (31433)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	SIP Statistics	:7acf (31439)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	WAP-WSP Packet Counter	:7ad2 (31442)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	That ther racket coulder	7ae3 (31459)	RTP 218 PT=IT
Feb 21, 2023 17:30:5 10.201.38.140	239.0.1.11	0x7ae6 (31462)	RTP 218 PT=IT

6. Wählen Sie den Stream, um ihn in Audio zu konvertieren und klicken Sie auf Play Streams.

•	• •			Wireshark · RTP Str	eams · TestIPPhone	Gi3025.pcap			
	Source Address 10.201.38.140	^	Source Port 20764	Destination Address 239.0.1.11	Destination Port 20764	SSRC 0x695712bb	Start Time 10.728624	Duration 14.69	Payloa g711L
	1 streams, 1 selected Limit to displa Help Find	d, 73 ay fi i Rev	5 total packets. R ilter Time o verse _ Analy.	ight-click for more options. f Day ze Prepare Filter	Play Streams	Сору 💙	Export	C	Close

Es muss eine Audiowelle angezeigt werden, und die Wiedergabetaste ist verfügbar, um die Audiodaten abzuspielen. Wenn Sie die Audioübertragung hören, können Sie feststellen, ob bei den Streams unruhige oder unidirektionale Audioprobleme auftreten.

7. Exportieren Sie den Stream in eine Audiodatei mit der Erweiterung .wav, indem Sie auf **Exportieren > Datei Synchronisiertes Audio** klicken.

k Timing:	Jitter Buffer	CO Time o	of Day	
Inaudible	streams _ Analyze _	Prepare Filter	Export V From cursor	
			Stream Synchronized Audio File Synchronized Audio	
			Payload Save audio data synchro	nized to start of the capture file.

Fehlerbehebung

Nachdem die SPAN-Funktion zum Erfassen und Analysieren der Aufzeichnung mit Wireshark verwendet wurde, wissen wir, ob das Problem mit Jitter, Paketverlust oder unidirektionalem Audio in Zusammenhang stehen kann. Wenn bei der Paketerfassung Probleme auftreten, überprüfen Sie im nächsten Schritt, ob auf dem Gerät, auf dem die Erfassung durchgeführt wurde, Probleme auftreten, die sich auf einen RTP-Audio-Stream auswirken können.

Choppy Audio

Unzureichende Bandbreite, Jitter und/oder Paketverluste können häufige Ursachen dafür sein, dass bei der Audio-Aufnahme Sprachfehler oder Verzerrungen auftreten.

1. Überprüfen Sie, ob der Jitter bei der Erfassung > 30 ms beträgt. Wenn dies der Fall ist, weist dies auf eine Zeitverzögerung beim Empfang der Pakete hin, die durch QoS-Richtlinien oder Routing-Probleme verursacht werden kann.

2. Überprüfen Sie, ob das bei der Erfassung verlorene Paket > 1 % beträgt. Falls dieser Wert hoch ist, müssen Sie nach Paketverlusten entlang des Pfades des Audio-Stream-Flusses suchen.

3. Überprüfen Sie die Eingangs- und Ausgangsschnittstellen im Pfad auf Verwerfungen.

<#root>

Switch#

show interface Gi1/0/1 | inc drops

Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0
0 unknown protocol drops

<#root>

Switch#

show interfaces Gi1/0/1 counters errors

Port Align-Err FCS-Err Xmit-Err Rcv-Err UnderSize OutDiscards Gi1/0/1 0 0 0 0 0 0 Port Single-Col Multi

Vergewissern Sie sich, dass keine inkrementierenden Eingabe-/Ausgabeverfügungen oder andere inkrementierende Fehler auf den Schnittstellen vorhanden sind.

4. Überprüfen Sie die QoS-Ausgangsrichtlinie für die am Pfad beteiligten Schnittstellen. Stellen Sie sicher, dass Ihr Datenverkehr in der Prioritätswarteschlange zugeordnet/klassifiziert ist und dass diese Warteschlange keine Löschvorgänge enthält.

<#root>

Hinweis: Falls es zu Unterbrechungen kommt, stellen Sie sicher, dass Sie den Sprachverkehr mit DSCP Expedite Forwarding (EF)-Markierungen richtig profilieren und sicherstellen, dass keine anderen schädlichen Datenflüsse irrtümlicherweise mit dem EF-Bit markiert wurden, wodurch die Prioritätswarteschlange überlastet wird.

Einweg-Audio

Wenn ein Telefonanruf getätigt wird, erhält nur einer der Teilnehmer die Audioverbindung. Häufige Ursachen für dieses Problem sind Erreichbarkeitsprobleme, Routing-Probleme oder NAT-/Firewall-Probleme.

1. Senden Sie einen Ping an das Zielsubnetz oder das Zielgateway, um sicherzustellen, dass eine bidirektionale Erreichbarkeit besteht.

<#root>

Switch#

```
ping 192.168.1.150
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.1.150, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

2. Führen Sie eine Traceroute vom Quell- zum Ziel-Subnetz und umgekehrt durch. Dies kann dabei helfen, zu überprüfen, wie viele Hops sich im Pfad befinden und ob er symmetrisch ist.

<#root>

Switch#

traceroute 192.168.1.150

Type escape sequence to abort. Tracing the route to 192.168.1.150 VRF info: (vrf in name/id, vrf out name/id) 1 192.168.2.12 2 msec * 1 msec 2 192.168.1.12 2 msec * 1 msec 3 192.168.1.150 2 msec 2 msec 1 msec

3. Stellen Sie sicher, dass das Gateway-Gerät für jedes Subnetz über optimales Routing verfügt und keine asymmetrischen Pfade vorhanden sind, die die Kommunikation beeinträchtigen könnten.

Tipp: Häufige Probleme mit unidirektionalem Audio hängen mit falsch konfigurierten ACLs zu Firewall-Regeln oder NAT-Problemen zusammen. Es wird empfohlen, zu überprüfen, ob diese Vorgänge den Audio-Stream beeinflussen können.

Zugehörige Informationen

<u>Technischer Support und Dokumentation für Cisco Systeme</u>

Informationen zu dieser Übersetzung

Cisco hat dieses Dokument maschinell übersetzen und von einem menschlichen Übersetzer editieren und korrigieren lassen, um unseren Benutzern auf der ganzen Welt Support-Inhalte in ihrer eigenen Sprache zu bieten. Bitte beachten Sie, dass selbst die beste maschinelle Übersetzung nicht so genau ist wie eine von einem professionellen Übersetzer angefertigte. Cisco Systems, Inc. übernimmt keine Haftung für die Richtigkeit dieser Übersetzungen und empfiehlt, immer das englische Originaldokument (siehe bereitgestellter Link) heranzuziehen.