Konfigurieren des grundlegenden AAA-RADIUS für Einwahlclients

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponenten Konventionen Konfigurieren Netzwerkdiagramm Konfigurationen Überprüfen Beispielausgabe Fehlerbehebung Befehle zur Fehlerbehebung Beispielausgabe für Debugging Zugehörige Informationen

Einführung

In diesem Dokument wird eine Beispielkonfiguration beschrieben, bei der ein Zugriffsserver zum Annehmen eingehender Analog- und ISDN-Verbindungen verwendet wird, und die anhand eines RADIUS-Servers (Authentication, Authorization, Accounting) authentifiziert wird. Weitere Informationen zu AAA und RADIUS finden Sie in den folgenden Dokumenten:

- Konfigurieren von RADIUS
- Konfigurieren des grundlegenden AAA auf einem Zugriffsserver

Voraussetzungen

Anforderungen

Bei dieser Konfiguration wird davon ausgegangen, dass der RADIUS-Server korrekt eingerichtet ist. Diese Konfiguration funktioniert auch mit den meisten kommerziell verfügbaren RADIUS-Servern. Weitere Informationen zur richtigen Serverkonfiguration finden Sie in der Dokumentation Ihres RADIUS-Servers.

Verwendete Komponenten

Die Informationen in diesem Dokument basieren auf den unten stehenden Software- und

Hardwareversionen.

- Cisco AS5300 mit T1 PRI und 48 digitalen Modems. Es wird mit der Cisco IOS® Softwareversion 12.0(7)T ausgeführt.
- CiscoSecure für Unix (CSU)-Server, Version 2.3(3).

Die hier beschriebene AAA-spezifische Konfiguration kann auch mit jedem einfachen Wählszenario verwendet werden. Stellen Sie sicher, dass der Zugriffsserver eingehende Anrufe annehmen kann, und fügen Sie dann die entsprechenden AAA-Befehle hinzu (siehe Konfiguration unten).

Die in diesem Dokument enthaltenen Informationen wurden aus Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Sie in einem Live-Netzwerk arbeiten, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen, bevor Sie es verwenden.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie in den <u>Cisco Technical Tips</u> <u>Conventions</u>.

Konfigurieren

In diesem Abschnitt erhalten Sie Informationen zum Konfigurieren der in diesem Dokument beschriebenen Funktionen.

Hinweis: Um weitere Informationen zu den in diesem Dokument verwendeten Befehlen zu erhalten, verwenden Sie das <u>Command Lookup Tool</u> (<u>nur registrierte</u> Kunden).

Netzwerkdiagramm

In diesem Dokument wird die im Diagramm unten dargestellte Netzwerkeinrichtung verwendet.

Konfigurationen

Nachfolgend sind die CSU- und Cisco Secure NT-Konfiguration (CSNT) sowie die Konfiguration des Netzwerkzugriffsservers (NAS) aufgeführt. Da diese Konfiguration ein einfaches Wählszenario darstellt, ist die CiscoSecure-Konfiguration für ISDN- und Async-Benutzer identisch. Die ISDN-

Clientkonfiguration ist nicht enthalten, da sie für diese RADIUS-Konfiguration nicht relevant ist.

```
CSU
# ./ViewProfile -p 9900 -u async_client
User Profile Information
user = async_client{
profile_id = 110
profile_cycle = 2
radius=Cisco {
check_items= {
2=cisco
!--- Password(2) is "cisco" } reply_attributes= { 6=2 !-
-- Service-Type(6) is Framed (2) 7=1 !--- Frame d-
Protocol(7) is PPP (1) } } # ./ViewProfile -p 9900 -u
isdn user
User Profile Information
user = isdn_user{
profile_id = 24
profile_cycle = 4
radius=Cisco {
check_items= {
2=cisco
! --- Password(2) is "cisco" } reply_attributes= { 6=2 !
--- Service-Type(6) is Framed (2) 7=1 ! --- Framed-
Protocol(7) is PPP (1) } }
```

Hinweis: In diesem einfachen Szenario sind die Konfigurationen der Async- und ISDN-Benutzer identisch.

CSNT RADIUS

So konfigurieren Sie den CiscoSecure NT (CSNT) RADIUS:

- 1. Erstellen Sie neue Benutzer mit dem Namen isdn_user und async_client.
- 2. Konfigurieren Sie das entsprechende Kennwort im Abschnitt "User Setup" (Benutzereinrichtung).
- 3. Wählen Sie im Abschnitt für RADIUS-Attribute der Internet Engineering Task Force (IETF) die folgenden Elemente aus dem Pulldown-Menü aus:Servicetyp (Attribut 6) = Framed und Framed-Protocol (Attribut 7)=PPPHinweis: Sie müssen auf das Kontrollkästchen neben den Attributen "Service-Type" und "Framed-Protocol" klicken.Hinweis: In diesem einfachen Szenario sind die Konfigurationen der Async- und ISDN-Benutzer identisch.

maui-nas-01

```
maui-nas-01#show running-config
Building configuration...
Current configuration:
!
version 12.0
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
!
hostname maui-nas-01
!
```

aaa new-model !--- Initiates the AAA access control system. !--- This command immediately locks down login and PPP authentication. aaa authentication login default group radius local !--- Exec login (for the list default) is authenticated using methods !--- radius then local. The router uses RADIUS for authentication at the !--login(exec) prompt. If RADIUS returns an error, the user is authenticated !--- using the local database. aaa authentication login NO_AUTHEN none !--- Exec login (for the list NO_AUTHEN) has authentication method none !---(no authentication). Interfaces to which this list is applied will not have !--- authentication enabled. Refer to the console port (line con 0) configuration. aaa authentication ppp default if-needed group radius local !--- PPP authentication (for the list default) uses methods radius then local. !--- The if-needed keyword automatically permits ppp for users that have !--successfully authenticated using exec mode. If the EXEC facility has !--- authenticated the user, RADIUS authentication for PPP is not performed. !----This is necessary for clients that use terminal window after dial. aaa authorization network default group radius local !--- Authorization of network services (PPP services) for the list default !--- uses methods radius then local. This is neccessary if you use RADIUS !--for the client IP address, Access List assignment and so on. enable secret 5 <deleted> ! username admin password 7 <deleted> !--- This username allows for access to the router in situations where !--- connectivity to the RADIUS server is lost. This is because the AAA !--configuration for exec login has the alternate method *local.* spe 2/0 2/7 firmware location system:/ucode/mica_port_firmware ! resource-pool disable ! ip subnet-zero no ip finger ! isdn switch-type primary-ni !--- Switch type is Primary NI-2. isdn voicecall-failure 0 mta receive maximum-recipients 0 ! ! controller T1 0 !--- T1 0 controller configuration. framing esf clock source line primary linecode b8zs prigroup timeslots 1-24 ! controller T1 1 !--- T1 1 is unused. clock source line secondary 1 ! controller T1 2 !--- T1 1 is unused. ! controller T1 3 !--- T1 1 is unused. ! interface Ethernet0 ip address 172.22.53.141 255.255.255.0 no ip directed-broadcast ! interface Serial0:23 !--- D-channel configuration for T1 0. no ip address no ip directed-broadcast encapsulation ppp dialer pool-member 23 !--- Assign Serial0:23 as member of dialer pool 23. !--- Dialer pool 23 is specified in interface Dialer 1. !--- Interface Dialer 1 will terminate the ISDN calls. isdn switch-type primary-ni isdn incoming-voice modem !--- Switch incoming analog calls to the internal digital modems. no cdp enable ! interface FastEthernet0 no ip address no ip directedbroadcast shutdown duplex auto speed auto ! interface Group-Async0 !--- Async Group Interface for the modems. ip unnumbered Ethernet0 !--- Unnumbered to the ethernet interface. no ip directed-broadcast encapsulation ppp async mode interactive !--- Configures interactive mode on the asynchronous interfaces. !--- This allows users to dial in and get to a shell or PPP session on !--that line. If you want incoming users to only connect using PPP configure !--- async mode dedicated instead.

peer default ip address pool ASYNC

```
!--- Use the ip pool named "ASYNC" to assign ip address
for !--- incoming connections. ppp authentication chap
group-range 1 48 !--- Lines (modems) 1 through 48 are in
this group async interface. ! interface Dialer1 !--
Dialer1 will terminate ISDN calls. ip unnumbered
Ethernet0 no ip directed-broadcast encapsulation ppp
dialer pool 23 !--- Dialer 1 uses dialer pool 23.
Interface Serial0:23 is !--- a member of this pool. peer
default ip address pool ISDN !--- Use the ip pool named
"ISDN" to assign ip address for !--- incoming
connections. no cdp enable ppp authentication chap ! ip
local pool ISDN 172.22.53.142 172.22.53.145 !--- IP
address pool named "ISDN". !--- This pool will be
assigned to connections on interface Dialer 1. ip local
pool ASYNC 172.22.53.146 172.22.53.149 !--- IP address
pool named "ASYNC". !--- This pool will be assigned to
incoming connections on Group-Async 0. !--- Note: This
address pool only has 4 addresses and is not sufficient
to !--- support all 48 modem lines. Configure your IP
pool with the address range !--- to support all
connections.
ip classless
no ip http server
 !
no cdp run
1
radius-server host 172.22.53.201 auth-port 1645 acct-
port 1646 key cisco
!--- Radius-server host IP address and encryption key.
!--- The encryption key must match the onbe configured
on the RADIUS server. ! line con 0 exec-timeout 0 0
login authentication NO_AUTHEN !--- Specifies that the
AAA list name assigned to the console is !--- NO_AUTHEN.
From the AAA configuration above, the list NO_AUTHEN !--
- does not use authentication. transport input none line
1 48 autoselect during-login !--- Displays the
username:password prompt after modems connect. !---
Without this the user must press enter to receive a
prompt. autoselect ppp !--- When the NAS detects
incoming PPP packets, the PPP session !--- will be
launched. modem InOut transport preferred none transport
input all transport output none line aux 0 line vty 0 4
! end
```

<u>Überprüfen</u>

Dieser Abschnitt enthält Informationen, die Sie zum Überprüfen Ihrer Konfiguration verwenden können.

Beispielausgabe

maui-nas-01#show caller user async_client detail
User: async_client, line tty 5, service Async
 Active time 00:01:04, Idle time 00:00:22
Timeouts: Absolute Idle Idle
 Session Exec
 Limits: - - 00:10:00

```
Disconnect in: - -
TTY: Line 5, running PPP on As5
Location: PPP: 172.22.53.148
```

!--- The IP address assigned from the the IP pool. DS0: (slot/unit/channel)=0/0/7 Line: Baud rate (TX/RX) is 115200/115200, no parity, 1 stopbits, 8 databits Status: Ready, Active, No Exit Banner, Async Interface Active HW PPP Support Active Capabilities: Hardware Flowcontrol In, Hardware Flowcontrol Out Modem Callout, Modem RI is CD, Line usable as async interface, Integrated Modem Modem State: Ready User: async_client, line As5, service PPP Active time 00:00:54, Idle time 00:00:23 Timeouts: Absolute Idle Limits: - - Disconnect in: - - PPP: LCP Open, CHAP (<- AAA), IPCP</pre>

!--- CHAP authentication was performed by AAA. LCP: -> peer, ACCM, AuthProto, MagicNumber, PCompression, ACCompression <- peer, ACCM, MagicNumber, PCompression, ACCompression NCP: Open IPCP IPCP: <- peer, Address -> peer, Address IP: Local 172.22.53.141, remote 172.22.53.148 Counts: 40 packets input, 2769 bytes, 0 no buffer 1 input errors, 1 CRC, 0 frame, 0 overrun 24 packets output, 941 bytes, 0 underruns 0 output errors, 0 collisions, 0 interface resets mauinas-01#show caller user isdn_user detail

User:	isdn_user	r, lin	e Se0:8,	service PPP
	Active ti	ime 00	:01:22, I	dle time 00:01:24
Timeouts:			Absolute	e Idle
L	imits:		-	00:02:00
D	isconnect	in:	-	00:00:35
PPP: 1	LCP Open,	CHAP	(<- AAA),	IPCP

!--- CHAP authentication was performed by AAA. LCP: -> peer, AuthProto, MagicNumber <- peer, MagicNumber NCP: Open IPCP IPCP: <- peer, Address -> peer, Address Dialer: Connected to , inbound Idle timer 120 secs, idle 84 secs Type is ISDN, group Dialer1 ! -- The ISDN Call uses int Dialer1. IP: Local 172.22.53.141, remote 172.22.53.142 ! -- The IP address was obtained from the local pool. Counts: 31 packets input, 872 bytes, 0 no buffer 0 input errors, 0 CRC, 0 frame, 0 overrun 34 packets output, 1018 bytes, 0 underruns 0 output errors, 0 collisions, 5 interface resets

Fehlerbehebung

Dieser Abschnitt enthält Informationen zur Fehlerbehebung in Ihrer Konfiguration.

Befehle zur Fehlerbehebung

Bestimmte **show**-Befehle werden vom <u>Output Interpreter Tool</u> unterstützt (nur <u>registrierte</u> Kunden), mit dem Sie eine Analyse der **show**-Befehlsausgabe anzeigen können.

Hinweis: Bevor Sie Debugbefehle ausgeben, lesen Sie <u>Wichtige Informationen über Debug-</u> Befehle.

- **debug isdn q931** Zeigt das Einrichten und Beenden der ISDN-Netzwerkverbindung (Layer 3) zwischen Router und ISDN-Switch an.
- Debug-Modem Zeigt die Modemzeilenaktivität auf einem Zugriffsserver an.
- debug ppp negotiation Zur Anzeige von Informationen über den PPP-Datenverkehr und den Austausch während der Aushandlung von Link Control Protocol (LCP), Authentifizierung und Network Control Protocol (NCP). Eine erfolgreiche PPP-Aushandlung öffnet zuerst den LCP-Status, authentifiziert sich dann, und schließlich wird NCP ausgehandelt.
- debug ppp authentication Zum Anzeigen von PPP-Authentifizierungsprotokollmeldungen, einschließlich CHAP-Paketaustausch (Challenge Handshake Authentication Protocol) und PAP-Austausch (Password Authentication Protocol).
- debug aaa authentication: Zum Anzeigen von Informationen über die AAA-/RADIUS-Authentifizierung
- debug aaa authorized So zeigen Sie Informationen zur AAA-/RADIUS-Autorisierung an.

- Debugradius So zeigen Sie detaillierte Debuginformationen an, die dem RADIUS zugeordnet sind. Verwenden Sie das <u>Outut Interpreter Tool</u> (nur registrierte Kunden) auf der Cisco Website für den technischen Support, um die Debug-Radius-Meldungen zu dekodieren. Ein Beispiel finden Sie in der unten abgebildeten Debugausgabe. Verwenden Sie die Informationen aus dem Debugradius, um zu bestimmen, welche Attribute ausgehandelt werden. Hinweis: Ab 12.2(11)T ist die Ausgabe des Debugradius bereits dekodiert und erfordert daher NICHT die Verwendung von Output Interpreter zur Dekodierung der Ausgabe. Weitere Informationen finden Sie im Dokument <u>RADIUS Debug Enhancements</u> (Erweiterungen für RADIUS-Debuggen).
- Anrufer-Benutzer anzeigen Zum Anzeigen von Parametern für den jeweiligen Benutzer, z. B. verwendete TTY-Leitung, asynchrone Schnittstelle (Gehäuse, Steckplatz oder Port), DS0-Kanalnummer, Modemnummer, zugewiesene IP-Adresse, PPP- und PPP-Paketparameter usw. Wenn Ihre Version der Cisco IOS-Software diesen Befehl nicht unterstützt, verwenden Sie den Befehl show user.

Beispielausgabe für Debugging

Wenn der Befehl **debug radius** von Ihrem Cisco Gerät ausgegeben wird, können Sie um potenzielle Probleme und Bugfixes anzuzeigen. Zur Verwendung müssen Sie ein <u>registrierter</u> Kunde sein, angemeldet sein und JavaScript aktivieren.

registrierter

Hinweis: Ab 12.2(11)T ist die Ausgabe des Debugradius bereits dekodiert und erfordert daher NICHT die Verwendung von Output Interpreter zur Dekodierung der Ausgabe. Weitere Informationen finden Sie im Dokument <u>RADIUS Debug Enhancements</u> (Erweiterungen für RADIUS-Debuggen).

maui-nas-01#debug isdn q931
ISDN Q931 packets debugging is on
maui-nas-01#debug ppp negotiation
PPP protocol negotiation debugging is on
maui-nas-01#debug ppp authentication

PPP authentication debugging is on maui-nas-01**#debug modem** Modem control/process activation debugging is on maui-nas-01**#debug aaa authentication** AAA Authentication debugging is on maui-nas-01**#debug aaa authorization** AAA Authorization debugging is on maui-nas-01**#debug radius** RADIUS protocol debugging is on

maui-nas-01#

*Apr 5 11:05:07.031: ISDN Se0:23: **RX <- SETUP** pd = 8 callref = 0x20FC

!--- Setup message for incoming call. *Apr 5 11:05:07.031: Bearer Capability i = 0x8890218F *Apr 5 11:05:07.031: Channel ID i = 0xA18387 *Apr 5 11:05:07.031: Called Party Number i = 0xA1, '81560' *Apr 5 11:05:07.035: %DIALER-6-BIND: Interface Serial0:6 bound to profile Dialer1 *Apr 5 11:05:07.035: ISDN Se0:23: TX -> CALL_PROC pd = 8 callref = 0xA0FC *Apr 5 11:05:07.035: Channel ID i = 0xA98387 *Apr 5 11:05:07.043: %LINK-3-UPDOWN: Interface Serial0:6, changed state to up *Apr 5 11:05:07.043: Se0:6 PPP: Treating connection as a callin *Apr 5 11:05:07.043: Se0:6 PPP: Phase is ESTABLISHING, Passive Open *Apr 5 11:05:07.043: Se0:6 LCP: State is Listen *Apr 5 11:05:07.047: ISDN Se0:23: TX -> CONNECT pd = 8 callref = 0xA0FC *Apr 5 11:05:07.047: Channel ID i = 0xA98387 *Apr 5 11:05:07.079: ISDN Se0:23: RX <- CONNECT_ACK pd = 8 callref = 0x20FC *Apr 5 11:05:07.079: ISDN Se0:23: CALL_PROGRESS: CALL_CONNECTED call id 0x2D, bchan -1, dsl 0 *Apr 5 11:05:07.499: Se0:6 LCP: I CONFREQ [Listen] id 28 len 10 *Apr 5 11:05:07.499: Se0:6 LCP: MagicNumber 0x5078A51F (0x05065078A51F) *Apr 5 11:05:07.499: Se0:6 AAA/AUTHOR/FSM: (0): LCP succeeds trivially *Apr 5 11:05:07.499: Se0:6 LCP: O CONFREQ [Listen] id 2 len 15 *Apr 5 11:05:07.499: Se0:6 LCP: AuthProto CHAP (0x0305C22305) *Apr 5 11:05:07.499: Se0:6 LCP: MagicNumber 0xE05213AA (0x0506E05213AA) *Apr 5 11:05:07.499: Se0:6 LCP: O CONFACK [Listen] id 28 len 10 *Apr 5 11:05:07.499: Se0:6 LCP: MagicNumber 0x5078A51F (0x05065078A51F) *Apr 5 11:05:07.555: Se0:6 LCP: I CONFACK [ACKsent] id 2 len 15 *Apr 5 11:05:07.555: Se0:6 LCP: AuthProto CHAP (0x0305C22305) *Apr 5 11:05:07.555: Se0:6 LCP: MagicNumber 0xE05213AA (0x0506E05213AA) *Apr 5 11:05:07.555: Se0:6 LCP: State is Open *Apr 5 11:05:07.555: Se0:6 PPP: Phase is AUTHENTICATING, by this end *Apr 5 11:05:07.555: Se0:6 CHAP: O CHALLENGE id 2 len 32 from "maui-nas-01" *Apr 5 11:05:07.631: Se0:6 CHAP: I RESPONSE id 2 len 30 from "isdn_user" !--- Incoming CHAP response from "isdn_user". *Apr 5 11:05:07.631: AAA: parse name=Serial0:6 idb type=12 tty=-1 *Apr 5 11:05:07.631: AAA: name=Serial0:6 flags=0x51 type=1 shelf=0 slot=0 adapter=0 port=0 channel=6 *Apr 5 11:05:07.631: AAA: parse name= idb type=-1 tty=-1 *Apr 5 11:05:07.631: AAA/MEMORY: create_user (0x619CEE28) user='isdn_user' ruser='' port='Serial0:6' rem_addr='isdn/81560' authen_type=CHAP service=PPP priv=1 *Apr 5 11:05:07.631: AAA/AUTHEN/START (2973699846): port='Serial0:6' list='' action=LOGIN service=PPP *Apr 5 11:05:07.631: AAA/AUTHEN/START (2973699846): using "default" list *Apr 5 11:05:07.631: AAA/AUTHEN (2973699846): status = UNKNOWN *Apr 5 11:05:07.631: AAA/AUTHEN/START (2973699846): Method=radius (radius) !--- AAA authentication method is RADIUS. *Apr 5 11:05:07.631: RADIUS: ustruct sharecount=1 *Apr 5 11:05:07.631: RADIUS: Initial Transmit Serial0:6 id 13 172.22.53.201:1645, Access-Request, len 87

!--- Access-Request from the NAS to the AAA server. !--- Note the IP address in the Access-Request matches the IP address !--- configured using the command: !--- radius-server host 172.22.53.201 key cisco *Apr 5 11:05:07.631: Attribute 4 6 AC16358D

```
*Apr 5 11:05:07.631:
                        Attribute 5 6 00004E26
*Apr 5 11:05:07.631:
                           Attribute 61 6 00000002
*Apr 5 11:05:07.631:
                           Attribute 1 11 6973646E
*Apr 5 11:05:07.631:
                           Attribute 30 7 38313536
*Apr 5 11:05:07.631:
                           Attribute 3 19 0297959E
*Apr 5 11:05:07.631:
                           Attribute 6 6 00000002
*Apr 5 11:05:07.631:
                            Attribute 7 6 0000001
*Apr 5 11:05:07.635: RADIUS: Received from id 13 172.22.53.201:1645,
Access-Accept, len 32
                           Attribute 6 6 0000002
*Apr 5 11:05:07.635:
*Apr 5 11:05:07.635:
                            Attribute 7 6 00000001
```

Die Attributwertpaare (AVPs) des Befehls **Debugradius** müssen dekodiert werden, um die Transaktion zwischen dem NAS und dem RADIUS-Server besser zu verstehen.

Hinweis: Ab 12.2(11)T ist die Ausgabe des Debugradius bereits dekodiert und erfordert daher NICHT die Verwendung von Output Interpreter zur Dekodierung der Ausgabe. Weitere Informationen finden Sie im Dokument <u>RADIUS Debug Enhancements</u>.

Mit dem Tool Output Interpreter können Sie eine Analyse der Ausgabe des Debugradius erhalten.

Die folgende Ausgabe in Kursivschrift ist das Ergebnis aus dem Tool Output Interpreter:

Access-Request 172.22.53.201:1645 id 13 Attribute Type 4: NAS-IP-Address is 172.22.53.141 Attribute Type 5: NAS-Port is 20006 Attribute Type 61: NAS-Port-Type is ISDN-Synchronous Attribute Type 1: User-Name is isdn Attribute Type 30: Called-Station-ID(DNIS) is 8156 Attribute Type 3: CHAP-Password is (encoded) Attribute Type 6: Service-Type is Framed Attribute Type 7: Framed-Protocol is PPP Access-Accept 172.22.53.201:1645 id 13 Attribute Type 6: Service-Type is Framed Attribute Type 7: Framed-Protocol is PPP

Überprüfen Sie in der vom Tool dekodierten Debugausgabe, ob Attribute Typ 6: Der Servicetyp wird eingerahmt und der Attributtyp 7: Das Framed-Protokoll ist PPP. Wenn Sie feststellen, dass die Attribute 6 oder 7 nicht wie gezeigt angezeigt sind, korrigieren Sie das Benutzerprofil auf dem RADIUS-Server (siehe Abschnitt Konfiguration). Beachten Sie außerdem, dass der Debugradius eine Access-Accept-Option anzeigt, die anzeigt, dass der RADIUS-Server den Benutzer erfolgreich authentifiziert hat. Wenn die Ausgabe eine Access-Reject anzeigt, wurde der Benutzer nicht authentifiziert, und Sie sollten die Konfiguration von Benutzername und Kennwort auf dem RADIUS-Server überprüfen. Ein weiteres zu überprüfendes Attribut ist Attributtyp 4: NAS-IP-Adresse. Überprüfen Sie, ob der vom Output Interpreter Tool angezeigte Wert mit der auf dem RADIUS-Server konfigurierten NAS-IP-Adresse übereinstimmt.

Hinweis: Aufgrund von Cisco IOS-Einschränkungen und Unterschieden bei der Debugausgabe mit verschiedenen Versionen können einige Attribute gekürzt werden (z. B. **Benutzername, Angerufene Station-ID (DNIS))**.

*Apr 5 11:05:07.635: AAA/AUTHEN (2973699846): status = PASS

!--- Authentication is successful *Apr 5 11:05:07.635: Se0:6 AAA/AUTHOR/LCP: Authorize LCP *Apr 5 11:05:07.635: Se0:6 AAA/AUTHOR/LCP (2783657211): Port='Serial0:6' list='' service=NET *Apr 5 11:05:07.635: AAA/AUTHOR/LCP: Se0:6 (2783657211) user='isdn_user' *Apr 5 11:05:07.635: Se0:6 AAA/AUTHOR/LCP (2783657211): send AV service=ppp *Apr 5 11:05:07.635: Se0:6 AAA/AUTHOR/LCP (2783657211): send AV protocol=lcp *Apr 5 11:05:07.635: Se0:6 AAA/AUTHOR/LCP (2783657211): found list "default" *Apr 5 11:05:07.635: Se0:6 AAA/AUTHOR/LCP (2783657211): Method=radius (radius) *Apr 5 11:05:07.635: Se0:6 AAA/AUTHOR (2783657211): Post authorization status = PASS_REPL *Apr 5 11:05:07.639: Se0:6 AAA/AUTHOR/LCP: Processing AV service=ppp *Apr 5 11:05:07.639: Se0:6 CHAP: 0 SUCCESS id 2 len 4 *Apr 5 11:05:07.639: Se0:6 PPP: Phase is UP *Apr 5 11:05:07.639: Se0:6 AAA/AUTHOR/FSM: (0): Can we start IPCP? *Apr 5 11:05:07.639: Se0:6 AAA/AUTHOR/FSM (3184893369): Port='Serial0:6' list='' service=NET *Apr 5 11:05:07.639: AAA/AUTHOR/FSM: Se0:6 (3184893369) user='isdn_user' *Apr 5 11:05:07.639: Se0:6 AAA/AUTHOR/FSM (3184893369): send AV service=ppp *Apr 5 11:05:07.639: Se0:6 AAA/AUTHOR/FSM (3184893369): send AV protocol=ip *Apr 5 11:05:07.639: Se0:6 AAA/AUTHOR/FSM (3184893369): found list "default" *Apr 5 11:05:07.639: Se0:6 AAA/AUTHOR/FSM (3184893369): Method=radius (radius) *Apr 5 11:05:07.639: Se0:6 AAA/AUTHOR (3184893369): Post authorization status = PASS_REPL *Apr 5 11:05:07.639: Se0:6 AAA/AUTHOR/FSM: We can start IPCP *Apr 5 11:05:07.639: Se0:6 IPCP: O CONFREQ [Not negotiated] id 2 len 10 *Apr 5 11:05:07.639: Se0:6 IPCP: Address 172.22.53.141 (0x0306AC16358D) *Apr 5 11:05:07.675: Se0:6 IPCP: I CONFREQ [REQsent] id 13 len 10 *Apr 5 11:05:07.675: Se0:6 IPCP: Address 0.0.0.0 (0x03060000000) *Apr 5 11:05:07.675: Se0:6 AAA/AUTHOR/IPCP: Start. Her address 0.0.0.0, we want 0.0.0.0 *Apr 5 11:05:07.675: Se0:6 AAA/AUTHOR/IPCP: Processing AV service=ppp *Apr 5 11:05:07.675: Se0:6 AAA/AUTHOR/IPCP: Authorization succeeded *Apr 5 11:05:07.675: Se0:6 AAA/AUTHOR/IPCP: Done. Her address 0.0.0.0, we want 0.0.0.0 *Apr 5 11:05:07.675: Se0:6 IPCP: Pool returned 172.22.53.142

!--- IP address for the peer obtained from the pool *Apr 5 11:05:07.675: Se0:6 IPCP: O CONFNAK [REQsent] id 13 len 10 *Apr 5 11:05:07.675: Se0:6 IPCP: Address 172.22.53.142 (0x0306AC16358E) *Apr 5 11:05:07.699: Se0:6 IPCP: I CONFACK [REQsent] id 2 len 10 *Apr 5 11:05:07.699: Se0:6 IPCP: Address 172.22.53.141 (0x0306AC16358D) *Apr 5 11:05:07.707: Se0:6 IPCP: I CONFREQ [ACKrcvd] id 14 len 10 *Apr 5 11:05:07.707: Se0:6 IPCP: Address 172.22.53.142 (0x0306AC16358E) *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP: Start. Her address 172.22.53.142, we want 172.22.53.142 *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP (3828612481): Port='Serial0:6' list='' service=NET *Apr 5 11:05:07.707: AAA/AUTHOR/IPCP: Se0:6 (3828612481) user='isdn_user' *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP (3828612481): send AV service=ppp *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP (3828612481): send AV protocol=ip *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP (3828612481): send AV addr*172.22.53.142 *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP (3828612481): found list "default" *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP (3828612481): Method=radius (radius) *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR (3828612481): Post authorization status = PASS_REPL *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP: Reject 172.22.53.142, using 172.22.53.142 *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP: Processing AV service=ppp *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP: Processing AV addr*172.22.53.142 *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP: Authorization succeeded *Apr 5 11:05:07.707: Se0:6 AAA/AUTHOR/IPCP: Done. Her address 172.22.53.142, we want 172.22.53.142 *Apr 5 11:05:07.707: Se0:6 IPCP: O CONFACK [ACKrcvd] id 14 len 10 *Apr 5 11:05:07.707: Se0:6 IPCP: Address 172.22.53.142 (0x0306AC16358E) *Apr 5 11:05:07.707: Se0:6 IPCP: State is Open *Apr 5 11:05:07.711: Dil IPCP: Install route to 172.22.53.142

!--- IPCP state is open. A route to the remote peer is installed *Apr 5 11:05:08.639: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0:6, changed state to up *Apr 5 11:05:13.043: %ISDN-6-CONNECT: Interface Serial0:6 is now connected to isdn_user maui-nas-01# Damit ist die Aushandlung für den ISDN-Client abgeschlossen. Die unten abgebildete Ausgabe zeigt die Aushandlung für einen Async-Aufruf (z. B. einen Windows-Client).

maui-nas-01#

*Apr 5 11:05:53.527: ISDN Se0:23: RX <- SETUP pd = 8 callref = 0x21C5 !--- Incoming Setup message for Async Call. *Apr 5 11:05:53.527: Bearer Capability i = 0x9090A2 *Apr 5 11:05:53.527: Channel ID i = 0xA18388 *Apr 5 11:05:53.527: Progress Ind i = 0x8183 -Origination address is non-ISDN *Apr 5 11:05:53.527: Called Party Number i = 0xA1, '81560' *Apr 5 11:05:53.531: ISDN Se0:23: TX -> CALL_PROC pd = 8 callref = 0xA1C5 *Apr 5 11:05:53.531: Channel ID i = 0xA98388 *Apr 5 11:05:53.531: ISDN Se0:23: TX -> ALERTING pd = 8 callref = 0xA1C5 *Apr 5 11:05:53.667: ISDN Se0:23: TX -> CONNECT pd = 8 callref = 0xA1C5 *Apr 5 11:05:53.683: ISDN Se0:23: RX <- CONNECT_ACK pd = 8 callref = 0x21C5 *Apr 5 11:05:53.687: ISDN Se0:23: CALL_PROGRESS: CALL_CONNECTED call id 0x2E, bchan -1, dsl 0 *Apr 5 11:06:10.815: TTY5: DSR came up *Apr 5 11:06:10.815: tty5: Modem: IDLE->(unknown) *Apr 5 11:06:10.815: TTY5: EXEC creation *Apr 5 11:06:10.815: AAA: parse name=tty5 idb type=10 tty=5 *Apr 5 11:06:10.815: AAA: name=tty5 flags=0x11 type=4 shelf=0 slot=0 adapter=0 port=5 channel=0 *Apr 5 11:06:10.815: AAA: parse name=Serial0:7 idb type=12 tty=-1 *Apr 5 11:06:10.815: AAA: name=Serial0:7 flags=0x51 type=1 shelf=0 slot=0 adapter=0 port=0 channel=7 *Apr 5 11:06:10.815: AAA/MEMORY: create_user (0x614D4DBC) user='' ruser='' port='tty5' rem_addr='async/81560' authen_type=ASCII service=LOGIN priv=1 *Apr 5 11:06:10.815: AAA/AUTHEN/START (2673527044): port='tty5' list='' action=LOGIN service=LOGIN *Apr 5 11:06:10.815: AAA/AUTHEN/START (2673527044): using "default" list *Apr 5 11:06:10.815: AAA/AUTHEN/START (2673527044): Method=radius (radius) *Apr 5 11:06:10.815: AAA/AUTHEN (2673527044): status = GETUSER *Apr 5 11:06:10.815: TTY5: set timer type 10, 30 seconds *Apr 5 11:06:13.475: TTY5: Autoselect(2) sample 7E *Apr 5 11:06:13.475: TTY5: Autoselect(2) sample 7EFF *Apr 5 11:06:13.475: TTY5: Autoselect(2) sample 7EFF7D *Apr 5 11:06:13.475: TTY5: Autoselect(2) sample 7EFF7D23 *Apr 5 11:06:13.475: TTY5 Autoselect cmd: ppp negotiate

!--- the router recongnizes the ppp packets and launches ppp. *Apr 5 11:06:13.475: AAA/AUTHEN/ABORT: (2673527044) because Autoselected. *Apr 5 11:06:13.475: AAA/MEMORY: free_user (0x614D4DBC) user='' ruser='' port='tty5' rem_addr='async/81560' authen_type=ASCII service=LOGIN priv=1 *Apr 5 11:06:13.479: TTY5: EXEC creation *Apr 5 11:06:13.479: TTY5: create timer type 1, 600 seconds *Apr 5 11:06:13.607: TTY5: destroy timer type 1 (OK) *Apr 5 11:06:13.607: TTY5: destroy timer type 0 *Apr 5 11:06:15.607: %LINK-3-UPDOWN: Interface Async5, changed state to up *Apr 5 11:06:15.607: As5 PPP: Treating connection as a dedicated line *Apr 5 11:06:15.607: As5

PPP: Phase is ESTABLISHING, Active Open

!--- PPP negotiation begins. *Apr 5 11:06:15.607: As5 AAA/AUTHOR/FSM: (0): LCP succeeds trivially *Apr 5 11:06:15.607: As5 LCP: O CONFREQ [Closed] id 1 len 25 *Apr 5 11:06:15.607: As5 LCP: ACCM 0x000A0000 (0x0206000A0000) *Apr 5 11:06:15.607: As5 LCP: AuthProto CHAP (0x0305C22305) *Apr 5 11:06:15.607: As5 LCP: MagicNumber 0xE0531DB8 (0x0506E0531DB8) *Apr 5 11:06:15.607: As5 LCP: PFC (0x0702) *Apr 5 11:06:15.607: As5 LCP: ACFC (0x0802) *Apr 5 11:06:16.487: As5 LCP: I CONFREQ [REQsent] id 3 len 23 *Apr 5 11:06:16.487: As5 LCP: ACCM 0x000A0000 (0x0206000A0000) *Apr 5 11:06:16.487: As5 LCP: MagicNumber 0x65FFA5C7 (0x050665FFA5C7) *Apr 5 11:06:16.487: As5 LCP: PFC (0x0702) *Apr 5 11:06:16.487: As5 LCP: ACFC (0x0802) *Apr 5 11:06:16.487: As5 LCP: Callback 6 (0x0D0306) *Apr 5 11:06:16.487: Unthrottle 5 *Apr 5 11:06:16.487: As5 LCP: O CONFREJ [REQsent] id 3 len 7 *Apr 5 11:06:16.487: As5 LCP: Callback 6 (0x0D0306) *Apr 5 11:06:17.607: As5 LCP: TIMEout: State REQsent *Apr 5 11:06:17.607: As5 LCP: O CONFREQ [REQsent] id 2 len 25 *Apr 5 11:06:17.607: As5 LCP: ACCM 0x000A0000 (0x0206000A0000) *Apr 5 11:06:17.607: As5 LCP: AuthProto CHAP (0x0305C22305) *Apr 5 11:06:17.607: As5 LCP: MagicNumber 0xE0531DB8 (0x0506E0531DB8) *Apr 5 11:06:17.607: As5 LCP: PFC (0x0702) *Apr 5 11:06:17.607: As5 LCP: ACFC (0x0802) *Apr 5 11:06:17.735: As5 LCP: I CONFACK [REQsent] id 2 len 25 *Apr 5 11:06:17.735: As5 LCP: ACCM 0x000A0000 (0x0206000A0000) *Apr 5 11:06:17.735: As5 LCP: AuthProto CHAP (0x0305C22305) *Apr 5 11:06:17.735: As5 LCP: MagicNumber 0xE0531DB8 (0x0506E0531DB8) *Apr 5 11:06:17.735: As5 LCP: PFC (0x0702) *Apr 5 11:06:17.735: As5 LCP: ACFC (0x0802) *Apr 5 11:06:19.479: As5 LCP: I CONFREQ [ACKrcvd] id 4 len 23 *Apr 5 11:06:19.479: As5 LCP: ACCM 0x000A0000 (0x0206000A0000) *Apr 5 11:06:19.479: As5 LCP: MagicNumber 0x65FFA5C7 (0x050665FFA5C7) *Apr 5 11:06:19.479: As5 LCP: PFC (0x0702) *Apr 5 11:06:19.479: As5 LCP: ACFC (0x0802) *Apr 5 11:06:19.479: As5 LCP: Callback 6 (0x0D0306) *Apr 5 11:06:19.479: As5 LCP: O CONFREJ [ACKrcvd] id 4 len 7 *Apr 5 11:06:19.479: As5 LCP: Callback 6 (0x0D0306) *Apr 5 11:06:19.607: As5 LCP: TIMEout: State ACKrcvd *Apr 5 11:06:19.607: As5 LCP: 0 CONFREQ [ACKrcvd] id 3 len 25 *Apr 5 11:06:19.607: As5 LCP: ACCM 0x000A0000 (0x0206000A0000) *Apr 5 11:06:19.607: As5 LCP: AuthProto CHAP (0x0305C22305) *Apr 5 11:06:19.607: As5 LCP: MagicNumber 0xE0531DB8 (0x0506E0531DB8) *Apr 5 11:06:19.607: As5 LCP: PFC (0x0702) *Apr 5 11:06:19.607: As5 LCP: ACFC (0x0802) *Apr 5 11:06:19.607: As5 LCP: I CONFREQ [REQsent] id 5 len 20 *Apr 5 11:06:19.607: As5 LCP: ACCM 0x000A0000 (0x0206000A0000) *Apr 5 11:06:19.607: As5 LCP: MagicNumber 0x65FFA5C7 (0x050665FFA5C7) *Apr 5 11:06:19.607: As5 LCP: PFC (0x0702) *Apr 5 11:06:19.607: As5 LCP: ACFC (0x0802) *Apr 5 11:06:19.607: As5 LCP: O CONFACK [REQsent] id 5 len 20 *Apr 5 11:06:19.607: As5 LCP: ACCM 0x000A0000 (0x0206000A0000) *Apr 5 11:06:19.607: As5 LCP: MagicNumber 0x65FFA5C7 (0x050665FFA5C7) *Apr 5 11:06:19.607: As5 LCP: PFC (0x0702) *Apr 5 11:06:19.607: As5 LCP: ACFC (0x0802) *Apr 5 11:06:19.719: As5 LCP: I CONFACK [ACKsent] id 3 len 25 *Apr 5 11:06:19.719: As5 LCP: ACCM 0x000A0000 (0x0206000A0000) *Apr 5 11:06:19.719: As5 LCP: AuthProto CHAP (0x0305C22305) *Apr 5 11:06:19.719: As5 LCP: MagicNumber 0xE0531DB8 (0x0506E0531DB8) *Apr 5 11:06:19.719: As5 LCP: PFC (0x0702) *Apr 5 11:06:19.719: As5 LCP: ACFC (0x0802) *Apr 5 11:06:19.719: As5 LCP: State is Open *Apr 5 11:06:19.719: As5 PPP: Phase is AUTHENTICATING, by this end *Apr 5 11:06:19.719: As5 CHAP: O CHALLENGE id 1 len 32 from "mauinas-01" *Apr 5 11:06:19.863: As5 CHAP: I RESPONSE id 1 len 33 from "async_client" !--- Incoming CHAP response from "async_client". *Apr 5 11:06:19.863: AAA: parse name=Async5 idb type=10 tty=5 *Apr 5 11:06:19.863: AAA: name=Async5 flags=0x11 type=4 shelf=0 slot=0 adapter=0 port=5 channel=0 *Apr 5 11:06:19.863: AAA: parse name=Serial0:7 idb type=12 tty=-1 *Apr 5 11:06:19.863: AAA: name=Serial0:7 flags=0x51 type=1 shelf=0 slot=0 adapter=0 port=0 channel=7 *Apr 5 11:06:19.863: AAA/MEMORY: create_user (0x6195AE40) user='async_client' ruser='' port='Async5' rem_addr='async/81560' authen_type=CHAP service=PPP priv=1 *Apr 5 11:06:19.863: AAA/AUTHEN/START (2673347869): port='Async5' list='' action=LOGIN service=PPP *Apr 5 11:06:19.863: AAA/AUTHEN/START (2673347869): using "default" list *Apr 5 11:06:19.863: AAA/AUTHEN (2673347869): status = UNKNOWN *Apr 5 11:06:19.863: AAA/AUTHEN/START (2673347869): Method=radius (radius) *Apr 5 11:06:19.863: RADIUS: ustruct sharecount=1 *Apr 5 11:06:19.867: RADIUS: Initial Transmit Async5 id 14 172.22.53.201:1645,

Access-Request, len 90

*Apr	5	11:06:19.867:		Attribute 4 6 AC16358D		
*Apr	5	11:06:19.867:		Attribute 5 6 0000005		
*Apr	5	11:06:19.867:		Attribute 61 6 00000000		
*Apr	5	11:06:19.867:		Attribute 1 14 6173796E		
*Apr	5	11:06:19.867:		Attribute 30 7 38313536		
*Apr	5	11:06:19.867:		Attribute 3 19 01B8292F		
*Apr	5	11:06:19.867:		Attribute 6 6 0000002		
*Apr	5	11:06:19.867:		Attribute 7 6 0000001		
*Apr	5	11:06:19.867:	RADIUS:	: Received from id 14 172.22.53.201:1645,		
Access-Accept, len 32						
*Apr	5	11:06:19.867:		Attribute 6 6 0000002		

Die AVPs des Befehls debug radius müssen dekodiert werden, um die Transaktion zwischen dem NAS und dem RADIUS-Server besser zu verstehen.

Hinweis: Ab 12.2(11)T ist die Ausgabe des Debugradius bereits dekodiert und erfordert daher NICHT die Verwendung von Output Interpreter zur Dekodierung der Ausgabe. Weitere Informationen finden Sie im Dokument <u>RADIUS Debug Enhancements</u> (Erweiterungen für RADIUS-Debuggen).

Mit dem Tool Output Interpreter können Sie eine Analyse der Ausgabe des Debugradius erhalten.

Die folgende Ausgabe in Kursivschrift ist das Ergebnis aus dem Tool Output Interpreter:

```
Access-Request 172.22.53.201:1645 id 14

Attribute Type 4: NAS-IP-Address is 172.22.53.141

Attribute Type 5: NAS-Port is 5

Attribute Type 61: NAS-Port-Type is Asynchronous

Attribute Type 1: User-Name is asyn

Attribute Type 30: Called-Station-ID(DNIS) is 8156

Attribute Type 3: CHAP-Password is (encoded)

Attribute Type 6: Service-Type is Framed

Attribute Type 7: Framed-Protocol is PPP

Access-Accept 172.22.53.201:1645 id 14

Attribute Type 6: Service-Type is Framed

Attribute Type 7: Framed-Protocol is PPP
```

Überprüfen Sie in der vom Tool dekodierten Debugausgabe, ob Attribute Typ 6: Der Servicetyp wird eingerahmt und der Attributtyp 7: Das Framed-Protokoll ist PPP. Wenn Sie feststellen, dass die Attribute 6 oder 7 nicht wie gezeigt angezeigt sind, korrigieren Sie das Benutzerprofil auf dem RADIUS-Server (siehe Abschnitt Konfiguration). Beachten Sie außerdem, dass der Debugradius eine Access-Accept-Option anzeigt, die anzeigt, dass der RADIUS-Server den Benutzer erfolgreich authentifiziert hat. Wenn die Ausgabe eine Access-Reject anzeigt, wurde der Benutzer nicht authentifiziert, und Sie sollten die Konfiguration von Benutzername und Kennwort auf dem RADIUS-Server überprüfen. Ein weiteres zu überprüfendes Attribut ist Attributtyp 4: NAS-IP-Adresse. Überprüfen Sie, ob der vom Output Interpreter Tool angezeigte Wert mit der auf dem RADIUS-Server konfigurierten NAS-IP-Adresse übereinstimmt.

Hinweis: Aufgrund von Cisco IOS-Einschränkungen und Unterschieden bei der Debugausgabe mit verschiedenen Versionen können einige Attribute gekürzt werden (z. B. **Benutzername, Angerufene Station-ID (DNIS))**.

```
*Apr 5 11:06:19.871: AAA/AUTHEN (2673347869): status = PASS
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/LCP: Authorize LCP
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/LCP (3232903941): Port='Async5' list=''
service=NET
*Apr 5 11:06:19.871: AAA/AUTHOR/LCP: As5 (3232903941) user='async_client'
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/LCP (3232903941): send AV service=ppp
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/LCP (3232903941): send AV protocol=lcp
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/LCP (3232903941): found list "default"
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/LCP (3232903941): found list "default"
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/LCP (3232903941): Method=radius (radius)
*Apr 5 11:06:19.871: As5 AAA/AUTHOR (3232903941): Post authorization status
= PASS_REPL
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/LCP: Processing AV service=ppp
*Apr 5 11:06:19.871: As5 CHAP: O SUCCESS id 1 len 4
```

```
*Apr 5 11:06:19.871: As5 PPP: Phase is UP
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/FSM: (0): Can we start IPCP?
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/FSM (1882093345): Port='Async5' list=''
service=NET
*Apr 5 11:06:19.871: AAA/AUTHOR/FSM: As5 (1882093345) user='async_client'
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/FSM (1882093345): send AV service=ppp
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/FSM (1882093345): send AV protocol=ip
     5 11:06:19.871: As5 AAA/AUTHOR/FSM (1882093345): found list "default"
*Apr
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/FSM (1882093345): Method=radius (radius)
*Apr 5 11:06:19.871: As5 AAA/AUTHOR (1882093345): Post authorization status
= PASS_REPL
*Apr 5 11:06:19.871: As5 AAA/AUTHOR/FSM: We can start IPCP
*Apr 5 11:06:19.875: As5 IPCP: O CONFREQ [Closed] id 1 len 10
*Apr 5 11:06:19.875: As5 IPCP:
                                 Address 172.22.53.141 (0x0306AC16358D)
*Apr
     5 11:06:19.991: As5 IPCP: I CONFREQ [REQsent] id 1 len 34
*Apr 5 11:06:19.991: As5 IPCP: Address 0.0.0.0 (0x03060000000)
*Apr 5 11:06:19.991: As5 IPCP: PrimaryDNS 0.0.0.0 (0x81060000000)
*Apr 5 11:06:19.991: As5 IPCP: PrimaryWINS 0.0.0.0 (0x82060000000)
*Apr 5 11:06:19.991: As5 IPCP: SecondaryDNS 0.0.0.0 (0x83060000000)
*Apr 5 11:06:19.991: As5 IPCP: SecondaryWINS 0.0.0.0 (0x84060000000)
*Apr 5 11:06:19.991: As5 AAA/AUTHOR/IPCP: Start. Her address 0.0.0.0,
```

we want 172.22.53.148

!--- The address for the peer obtained from the pool. *Apr 5 11:06:19.991: As5 AAA/AUTHOR/IPCP: Processing AV service=ppp *Apr 5 11:06:19.991: As5 AAA/AUTHOR/IPCP: Authorization succeeded *Apr 5 11:06:19.991: As5 AAA/AUTHOR/IPCP: Done. Her address 0.0.0.0, we want 172.22.53.148 *Apr 5 11:06:19.991: As5 IPCP: O CONFREJ [REQsent] id 1 len 22 *Apr 5 11:06:19.991: As5 IPCP: PrimaryWINS 0.0.0.0 (0x82060000000) *Apr 5 11:06:19.995: As5 IPCP: SecondaryDNS 0.0.0.0 (0x83060000000) *Apr 5 11:06:19.995: As5 IPCP: SecondaryWINS 0.0.0.0 (0x84060000000) *Apr 5 11:06:20.007: As5 IPCP: I CONFACK [REQsent] id 1 len 10 *Apr 5 11:06:20.007: As5 IPCP: Address 172.22.53.141 (0x0306AC16358D) *Apr 5 11:06:20.119: As5 IPCP: I CONFREQ [ACKrcvd] id 2 len 16 *Apr 5 11:06:20.119: As5 IPCP: Address 0.0.0.0 (0x030600000000) *Apr 5 11:06:20.119: As5 IPCP: PrimaryDNS 0.0.0.0 (0x81060000000) *Apr 5 11:06:20.119: As5 AAA/AUTHOR/IPCP: Start. Her address 0.0.0.0, we want 172.22.53.148 *Apr 5 11:06:20.119: As5 AAA/AUTHOR/IPCP: Processing AV service=ppp *Apr 5 11:06:20.119: As5 AAA/AUTHOR/IPCP: Authorization succeeded *Apr 5 11:06:20.119: As5 AAA/AUTHOR/IPCP: Done. Her address 0.0.0.0, we want 172.22.53.148 *Apr 5 11:06:20.119: As5 IPCP: O CONFNAK [ACKrcvd] id 2 len 16 *Apr 5 11:06:20.119: As5 IPCP: Address 172.22.53.148 (0x0306AC163594) *Apr 5 11:06:20.119: As5 IPCP: PrimaryDNS 172.22.53.210 (0x8106AC1635D2) *Apr 5 11:06:20.231: As5 IPCP: I CONFREQ [ACKrcvd] id 3 len 16 *Apr 5 11:06:20.231: As5 IPCP: Address 172.22.53.148 (0x0306Ac163594) *Apr 5 11:06:20.231: As5 IPCP: PrimaryDNS 172.22.53.210 (0x8106AC1635D2) *Apr 5 11:06:20.231: As5 AAA/AUTHOR/IPCP: Start. Her address 172.22.53.148, we want 172.22.53.148 *Apr 5 11:06:20.231: As5 AAA/AUTHOR/IPCP (3727543204): Port='Async5' list='' service=NET *Apr 5 11:06:20.231: AAA/AUTHOR/IPCP: As5 (3727543204) user='async_client' *Apr 5 11:06:20.231: As5 AAA/AUTHOR/IPCP (3727543204): send AV service=ppp *Apr 5 11:06:20.231: As5 AAA/AUTHOR/IPCP (3727543204): send AV protocol=ip *Apr 5 11:06:20.231: As5 AAA/AUTHOR/IPCP (3727543204): send AV addr*172.22.53.148 *Apr 5 11:06:20.231: As5 AAA/AUTHOR/IPCP (3727543204): found list "default" *Apr 5 11:06:20.231: As5 AAA/AUTHOR/IPCP (3727543204): Method=radius (radius) *Apr 5 11:06:20.235: As5 AAA/AUTHOR (3727543204): Post authorization status = PASS REPL *Apr 5 11:06:20.235: As5 AAA/AUTHOR/IPCP: Reject 172.22.53.148, using 172.22.53.148 *Apr 5 11:06:20.235: As5 AAA/AUTHOR/IPCP: Processing AV service=ppp *Apr 5 11:06:20.235: As5 AAA/AUTHOR/IPCP: Processing AV addr*172.22.53.148 *Apr 5 11:06:20.235: As5 AAA/AUTHOR/IPCP: Authorization succeeded *Apr 5 11:06:20.235: As5 AAA/AUTHOR/IPCP: Done. Her address 172.22.53.148, we want 172.22.53.148 *Apr 5 11:06:20.235: As5 IPCP: O CONFACK [ACKrcvd] id 3 len 16 *Apr 5 11:06:20.235: As5 IPCP: Address 172.22.53.148 (0x0306AC163594) *Apr 5 11:06:20.235: As5 IPCP: PrimaryDNS 172.22.53.210 (0x8106AC1635D2) *Apr 5 11:06:20.235: As5 IPCP: State is Open *Apr 5 11:06:20.235: As5 IPCP: Install route to 172.22.53.148 !--- Route to remote peer is installed. *Apr 5 11:06:20.871: %LINEPROTO-5-UPDOWN: Line protocol on Interface Async5, changed state to up

Zugehörige Informationen

Technischer Support und Dokumentation - Cisco Systems