ONS 15454 M6 UDC-Ports auf Steuergerät -Konfigurationsbeispiel

Inhalt

Einführung Voraussetzungen Anforderungen Verwendete Komponente Hintergrundinformationen DWDM-Einrichtung (Dense Wavelength Division Multiplexing) Anwendung Beispiel 1 Beispiel 2 Beispiel 3 Einschränkung Konfiguration Überprüfen Fehlerbehebung Zugehörige Informationen

Einführung

In diesem Dokument wird die Verwendung von UDC-Ports (User Data Channel) erläutert, die auf der externen Verbindungseinheit (ECU) der Cisco ONS 15454 M6 verfügbar sind.

Voraussetzungen

Anforderungen

Cisco empfiehlt, diese Themen zu kennen.

- Systeme, Konzepte und Hardware der Multiservice Transport Platform (MSTP)
- Cisco Transport Controller (CTC)

Verwendete Komponente

Die Informationen in diesem Dokument basieren auf den folgenden Hardware- und Softwareversionen:

- ONS 15454 M6, ONS 15454 M6 ECU und ONS 15454 M TNC
- Optical Card Combining/Splitting Optical Supervisory Channel (OSC)
- CTC

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Hintergrundinformationen

Die ECU ist ein austauschbares Modul, das auf die ONS 15454 M6-Gehäuseeinheit gestellt wird. Das Steuergerätemodul erkennt und verwaltet den Bestand der externen Gehäuseeinheiten. Darüber hinaus werden die Mehrfachgehäuse-Managementverbindungen und Timing-Synchronisierungen verwaltet.

Für das ONS 15454 M6-Gehäuse stehen drei Arten von Steuergerätemodulen zur Verfügung, nämlich ECU (Teilenummer (PN): 15454-M6-ECU=), ECU2 (PN: 15454-M6-ECU2=) und ECU-60 V (PN: 15454-M6-ECU-60=).

Hinweis: Weitere Informationen zu diesem Modul finden Sie in Abschnitt 5.7 des <u>Cisco ONS</u> <u>15454 Hardware Installation Guide</u>.

Das Steuergerätemodul verfügt über zwei UDC-Ports. Jeder Port wird von verschiedenen TNC-Karten (Transport Node Controller) verwaltet und konfiguriert. Der Port auf der linken Seite ist mit dem TNC an Steckplatz 1 verknüpft. Ein weiterer Port auf der rechten Seite bezieht sich auf den TNC an Steckplatz 8.

Die Position der Ports ist wie folgt:

DWDM-Einrichtung (Dense Wavelength Division Multiplexing)

Um die Anwendung von UDC-Ports zu verstehen, stellen Sie sich ein Beispiel von zwei M6-Knoten vor, die miteinander verbunden sind und sich in einer Entfernung befinden. Angenommen, der Name dieser Knoten ist A und B.

Diese beiden im Bild gezeigten Knoten sind typische DWDM-Knoten. Sie sind über zwei Glasfaserstränge miteinander verbunden. Für ihre Verwaltung verwenden diese Knoten das OSC.

OSC ist ein optischer Kanal, der zum Transport von Overhead-Bytes verwendet wird, die nur für die Verwaltung von DWDM-Netzwerken verwendet werden. OSC ist immer ein separates optisches Signal bei 1510-nm-Wellenlänge. Vor der Übertragung über optische Glasfaserkabel werden sie mit anderen Kanälen kombiniert, die den tatsächlichen Datenverkehr übertragen, und dann am anderen Ende getrennt. Im Bild wird das OSC bei Knoten-A kombiniert und bei Knoten-B und umgekehrt getrennt.

Die von OSC verwendeten Overhead-Bytes sind STM-1 oder OC-3, abhängig vom Einrichtungstyp. D1 bis D3 Byte des Regenerator Section Overhead werden von OSC verwendet, um die Kommunikation zwischen DWDM-Knoten zu ermöglichen. Die übrigen Byte und die Nutzlast von STM-1 oder OC3 werden vom OSC nicht verwendet und können für andere Zwecke verwendet werden.

Anwendung

UDC-Ports, die auf der ECU verfügbar sind, verwenden eine Nutzlast von STM-1 oder OC-3, um einen Tunnel zwischen den beiden Knoten bereitzustellen. Der Tunnel hat eine Bandbreitenkapazität von 100 Mbit/s.

Im Folgenden finden Sie einige Beispiele, die Ihnen helfen, die Anwendung von UDC besser zu verstehen.

Beispiel 1

Wie in dieser Topologie gezeigt, sind zwei Computer am UDC-Port an der ECU jedes Knoten-A und Knoten-B angeschlossen. Beide Computer sind über einen Tunnel miteinander verbunden, der eine Bandbreite von 100 Mbit/s bereitstellt. Da dieser Tunnel transparent ist, ist er identisch mit den beiden Computern. Bei dieser Konfiguration können zwei Server auf dieselbe Weise miteinander verbunden werden.

In diesem Beispiel erhalten Sie 100 Mbit/s von Payload-Bytes von STM-1 und OC-3 von OSC.

Beispiel 2

Wie in dieser Topologie gezeigt, sind zwei Router über UDC-Ports eines ONS 15454 M6-Chassis miteinander verbunden. Über diesen UDC-Tunnel wird der Router verwaltet und verbunden, obwohl er sich in großer Entfernung befindet.

Beispiel 3

Switch-Ports können auf die gleiche Weise wie in der Topologie in Beispiel 2 über UDC miteinander verbunden werden.

Einschränkung

Der mit VLANs gekennzeichnete Datenverkehr wird auf UDC- oder VoIP-Ports, die sich auf der ECU befinden, nicht unterstützt. Dies bedeutet, dass zwei als Trunk konfigurierte Switch-Ports, die über die UDC-Ports der ECU miteinander verbunden sind, keine VLANs weiterleiten können, die auf Trunk-Schnittstellen konfiguriert sind.

Hinweis: Weitere Informationen finden Sie im Abschnitt G.23-Schnittstellenports im <u>Cisco</u> <u>ONS 15454 DWDM-Konfigurationsleitfaden</u>, <u>Version 9.8</u>.

Konfiguration

Auf der ECU der ONS 15454 M6 befinden sich zwei UDC-Ports. Der UDC-Port auf der linken Seite ist immer von der TNC-Karte im Steckplatz 1 konfigurierbar, und der UDC-Port auf der rechten Seite ist immer von der TNC-Karte im Steckplatz 8 konfigurierbar.

Hinweis: Verwandte TNC-Karten sollten verwendet werden. Das Patching von TNC Small Form-Factor Pluggable (SFP)-Ports ist abgeschlossen und sollte sich im UP-Status befinden.

UDC-Konfigurationen werden nur unterstützt, wenn das OSC an den SFP-Ports der TNC-Karte bereitgestellt wird.

Gehen Sie wie folgt vor, um Folgendes bereitzustellen:

- 1. Doppelklicken Sie in der Knotenansicht (Single-Shelf-Modus) oder der Gehäuseansicht (Mehrfachgehäuse-Ansicht) auf die TNC-Karte, für die Sie UDC und VoIP konfigurieren möchten.
- 2. Klicken Sie auf die Registerkarten Provisioning > UDC/VOIP.
- 3. Wählen Sie in der Dropdown-Liste "Servicetyp" die Option UDC aus.

Hinweis: Sie können UDC oder VoIP jeweils nur auf einem SFP-Port pro TNC-Karte konfigurieren. Wenn Sie UDC oder VoIP auf dem zweiten SFP-Port konfigurieren möchten, wählen Sie in der Dropdown-Liste "Service Type" (Servicetyp) für den ersten Port die Option NONE (KEINE) aus, und wählen Sie dann UDC oder VoIP für den zweiten Port aus.

4. Klicken Sie auf Übernehmen.

Überprüfen

Für diese Konfiguration ist derzeit kein Überprüfungsverfahren verfügbar.

Fehlerbehebung

Wenn Sie weitere Fragen haben, wenden Sie sich an das Cisco Technical Assistance Center (TAC).

Hinweis: Melden Sie sich auf der <u>Cisco Website für technischen Support</u> an, um weitere Informationen zu erhalten, oder besuchen Sie die Webseite <u>Cisco Worldwide Contacts</u>, um ein Verzeichnis mit gebührenfreien technischen Support-Nummern für Ihr Land zu erhalten.

Zugehörige Informationen

- Verwenden des UDC-Ports auf ONS 15454 M6
- Technischer Support und Dokumentation Cisco Systems